
Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Statistics with R for Biologists

James H. Bullard
Kasper Daniel Hansen

Margaret Taub

Berkeley, California
July 7-11, 2008

1 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

R Programming

1 Introduction

2 Functions

3 Debugging

4 Classes

5 Packages

6 The R Session

2 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Review

What does this code do:

> v <- sample(c(TRUE, FALSE),

+ size = 10, replace = TRUE)

> x <- v | FALSE == v

> v && FALSE

> g1 <- sample(c(TRUE, FALSE),

+ size = 10, replace = TRUE)

> g2 <- sample(c(TRUE, FALSE),

+ size = 10, replace = TRUE)

> g1 && g2

What is the dimension of the following objects? if there is
no dimension what is the length? Finally, and for massive
extra credit how does R add dimensions to vectors without
dimensions?

3 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Review

> v <- 1:10

> dim(v %*% t(v))

> rowMeans(v %*% t(v))

> rowMeans(t(v) %*% v)

My friend wants to know how many games of rock paper
scissors we need to play in order to determine who is the
better player. He tells me that he is 2 times as good as me
and he wants to know whats is the minimum number of
games necessary to play in order to be 99% sure that he is
twice as good as me.

4 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Background

The R language provides a mix of features to support
functional, procedural, and object oriented programming.

R is both an environment for statistical computing as well
as general purpose programming language.

R has first-class functions, general data structures,
international support, matrix operations, and can be
extended via C and other languages.

R does not have threads, has two systems of classes, but
none with explicit syntactic support, R is untyped.

R has built in support for statistical models incluiding a
reasonably complicated formula language.

5 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Functions: Introduction

R is “mostly” a functional language, so we really want to
understand functions - they are really the fundamental unit
of code (this is true whether you call them or write them).

In R functions are“first class”objects - this is demonstrated
by how they are defined ’<-’. What does this mean?

R functions are more formally known as ’closures’.

The last expression of a function is the default return
value. Alternatively, we can return from functions using
the return function.

6 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Functions: Arguments

> x <- 2

> fxy <- function(x, y = rep(1,

+ length(x))) {

+ return(x^y)

+ }

> fxy(y = seq(2, 16, by = 2),

+ x = rep(2, 8))

> fxy(rep(2, 8), seq(2, 16, by = 2))

> fxy(rep(2, 8))

All arguments to a function are “keyword” arguments

R has “partial matching” which is something you should try
to avoid depending on.

7 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Functions: Arguments

R has lazy evaluation, what is the length of y when the
function is called? (A million points: write a piece of
code to demonstrate lazy evaluation)

R has call by value semantics which means that whatever
arguments you pass to a function are passed by value - if
you modify objects referred to by parameters then copies
will be made.

8 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Functions: Arguments

> collapse <- function(...) {

+ paste("(", paste(list(...),

+ collapse = ", "), ")",

+ sep = "")

+ }

The special argument: ’...’ matches all remaining
arguments.

The function missing can be used to determine if an
argument was passed in or not.

9 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Functions: New Binary Operators

> "%r%" <- function(y, x) {

+ nn <- if (is.null(dim(x)))

+ rep(1, length(x))

+ else rep(1, nrow(x))

+ x <- cbind(nn, x)

+ solve(crossprod(x, x)) %*%

+ t(x) %*% y

+ }

> data(state.x77)

> state.x77[, "Murder"] %r% state.x77[,

+ "Income"]

10 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Functions: New Binary Operators

We can define new binary operators by using the special
%name% syntax. Note the use of quotes around the
defintion.

Matrix multiplication and others are examples.

What does my new binary operator do?

11 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Functions: Anonymous

In a vectorized language high-level ’mapping’ operations
are performed all of the time.

Calculate some summary statistics on the columns of a
matrix, process each element of a list, etc.

In R it is widespread belief that we should “avoid the for
loop”

> X <- matrix(rnorm(1e+05), nrow = 1000,

+ ncol = 1000)

> apply(X, 1, min)

> A <- apply(X, 1, function(row) {

+ sum(row > qnorm(0.975) |

+ row < qnorm(0.025))/length(row)

+ })

We could have done this with no loops! How?
12 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Functions: Objects

It is important to be familiar with functions as objects, i.e.
we can pass them as arguments, store them in lists, and
do much more!

Finally, why do we call functions closures?

> a <- list(f1 = function(x) {

+ tmp <- quantile(x, probs = seq(0,

+ 1, length = 11))

+ mean(x[x > tmp[2] & x <

+ tmp[10]])

+ }, f2 = function(x) {

+ (x - mean(x))/sd(x)

+ })

> dta <- rnorm(1000)

> a[[1]](dta)

13 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Functions: Scoping

R is a lexically scoped languge like Python or Scheme.

Quiz: What does this program print?

> a <- 2

> setA <- function() {

+ a <- 4

+ print(a)

+ }

> setA()

> print(a)

What about this one:

14 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Functions: Scoping

> a <- 2

> setA <- function() {

+ a <<- 3

+ print(a)

+ }

> setA()

> print(a)

The << − is syntactic sugar for recursing up the
“environment” looking for a binding for “a” and then
setting it. We can do this manually by:

15 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Functions: Scoping

> a <- 2

> setA <- function() {

+ thisEnv <- parent.env(new.env())

+ parentEnv <- parent.env(thisEnv)

+ assign("a", 4, parentEnv)

+ print(a)

+ }

> setA()

> print(a)

In a functional language we want to return values from
functions. We call functions for the return values, not
their side effects

16 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Functions: Scoping

This is pretty esoteric, but we can understand how R (and
for that matter a number of lexically scoped programming
languages) work. When we make a new function we are
creating a new “environment” in this environment “a” has
no binding, when we ask for the value of “a” we look it up
in our environment and if we don’t find it we follow the
link from the current environment to the parent
environment.

The special environment refered to as the “workspace” is
called the .GlobalEnv, we can query it, assign to it, and
delete from it.

Hard Question: How do we assign a variable to the
.GlobalEnv

1 assign, get, ls, rm, mget

17 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Hashtables

Environments can be used as hashtables and often are.
Environments don’t behave like normal R objects. First,
lets look at how a typical R object behaves. What does
the following code print and why?

> a <- list()

> a[["jim"]] <- 1

> b <- a

> b

> b[["joe"]] <- 2

> a

Now what happens in the case of environments?

18 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Hashtables

> a <- new.env(parent = emptyenv())

> assign("jim", 2, a)

> b <- a

> ls(b)

[1] "jim"

> assign("joe", 3, b)

> ls(a)

[1] "jim" "joe"

Environments don’t follow the pass by values semantics or
the copy on assignment rule. The environment then can
be used if you want a datastructure to pass around but
you never want R to copy it (think pointer)

19 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Hashtables

Bioconductor tends to use environments a lot and in this
context it is generally fine to just think about them as
hashtables.

We generally want to use lists to accomplish the same
purposes as environments, but we need to know that these
things exist in case we want to use them. To construct a
hashtable we do the following:

> ht <- new.env(hash = TRUE,

+ parent = emptyenv())

> lst <- list()

> tmp <- sapply(letters, function(l) {

+ assign(l, rbinom(1, size = 10,

+ prob = 0.9), ht)

+ })

> ls(ht)

20 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Hashtables

[1] "a" "b" "c" "d" "e" "f" "g"
[8] "h" "i" "j" "k" "l" "m" "n"
[15] "o" "p" "q" "r" "s" "t" "u"
[22] "v" "w" "x" "y" "z"

What does this code print?

> sapply(letters, function(l) {

+ lst[[l]] <- rbinom(1, size = 10,

+ prob = 0.9)

+ })

> names(lst)

Hard Question: What happens below

21 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Hashtables

> ht <- new.env(parent = emptyenv())

> mystery <- function(a, v, h) {

+ assign(a, v, h)

+ }

> mystery("jim", "B-", ht)

> ls(ht)

22 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Debugging

We will spend much more time in our lives debugging than
programming so we need to get a hang of it!

Interpreted languages such as R are generally much nicer
to program with because we can try things out
interactively - contrast this with C where in order to
determine the value of a variable at some point in the
program we will often print it

R has a number of debugging tools, but we are going to
focus on just two key functions: debug, browser

We are going to debug the following function - you can find the
entire source code in “src/foo.R”

23 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Debugging

> foo <- function(a, b = 10) {

+ b <- seq(1 - min(a[, 1]),

+ 1 + max(a[, 1]), length = b)

+ b <- cut(a[, 1], b)

+ b <- split(a, b, drop = FALSE)

+ res <- rep(0, length(b))

+ for (i in 1:length(b)) {

+ x <- b[[i]]

+ for (j in 1:(length(x) -

+ 1)) {

+ for (k in (j +

+ 1):(length(x))) {

+ res[i] <- res[i] +

+ (x[i, 2] -

+ x[j, 2])^2

24 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Debugging

+ }

+ }

+ }

+ return(res/sapply(b, function(c) nrow(c)^2))

+ return(b)

+ }

> a <- foo(a = cbind(runif(100,

+ 1, 100), rexp(100, 1/10)),

+ b = 10)

A great way to figure out how third party functions work in R is
by debugging them and then step through line by line.

25 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Browser

Another useful function is: browser. This function can be
inserted as a means to debug code that is misbehaving.

browser is essentially breakpoint in other languages.

> X <- matrix(runif(10000), 10,

+ 100)

> X[4, 21] <- NA

> apply(X, 1, function(row) {

+ E <- mean(row)

+ if (is.na(E)) {

+ browser()

+ }

+ sum((row - E)^2/E)

+ })

26 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

traceback

When we commit an error we can look at the call stack by
calling traceback.

We will see an example below...

27 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

OOP

Object oriented programming is a programming paradigm
which has become very popular in recent years. Object
oriented programming allows us to construct modular
pieces of code which can be utilized as building blocks for
large systems.

R is not a particularly object oriented system, but support
exists for programming in an object oriented style.

The Bioconductor project has pushed this style and we will
need to get familiar with the object system in R in order to
work effectively with Bioconductor.

Unfortunately R has two class systems known as S3 and
S4. These two systems are quite different and don’t play
well together.

28 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

OOP

In both R systems the object oriented system is much
more method-centric than languages like Java and Python
- R’s system is very Lisp-like.

29 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

S3 Classes

First we will take a look at S3 classes as they are quite
prevalent in day-to-day R programming and need to be
introduced in order to get a handle on some of the tricky
corners of R.

An S3 class is constructed via the following code:
class(obj) <- "class.name"

Essentially, a class in this setting is nothing more than an
attribute that is used by special functions to perform
methods dispatch.

30 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

S3 Classes

“The greatest use of object oriented programming in R is
through print methods, summary methods and plot
methods. These methods allow us to have one generic
function call, plot say, that dispatches on the type of its
argument and calls a plotting function that is specific to
the data supplied.” – R Manual

> cdf <- ecdf(rnorm(1000))

> class(cdf)

> plot(cdf)

> plot(rnorm(1000))

> print

31 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

S3 Classes

An S3 method or generic is a method like print which when
called dispatches on the class attribute of its first argument. If
there is no class argument or if there is no matching function
for the class then we call xxx.default.

> vec <- rnorm(100)

> class(vec)

> getS3method("plot", "numeric")

> class(vec) <- "density"

> plot(vec)

> traceback()

32 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

S3 Classes

> jim <- list(height = 2.54 *

+ 12 * 6/100, weight = 180/2.2,

+ name = "James")

> class(jim) <- "person"

> class(jim)

[1] "person"

> print(jim)

33 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

S3 Classes

$height
[1] 1.8288

$weight
[1] 81.81818

$name
[1] "James"

attr(,"class")
[1] "person"

34 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

S3 Classes

> print.person <- function(x,

+ ...) {

+ cat("name:", x$name, "\n")

+ cat("height:", x$height,

+ "meters", "\n")

+ cat("weight:", x$weight,

+ "kilograms", "\n")

+ }

> print(jim)

name: James
height: 1.8288 meters
weight: 81.81818 kilograms

35 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

S3 Classes

Warning: There is an error below in two places, what is it?
What is the object, and what is the class?
An S3 class is really just a list with an attribute class
associated with it. In order to define a specialized method for
our class (such as plot, or summary) we just define a new
function with xxx.jim and then when xxx is called on an object
with class(object) == "jim" then R calls our method
automatically. This is very common and thus leads an R
programmer to often just call plot or summary on about
anything – generally with sensible results.

36 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Useful S3 Method Functions

1 getS3method("print","person") : Gets the
appropriate method associated with a class, useful to see
how a method is implemented. Try:
getS3method("residuals", "lm")

2 In emacs using ESS we can often use tab to determine
what methods are available under a certain generic. Try
typing ”plot.” and then hitting tab - hopefully we will see a
list of possible completions. This can be quite useful for
getting help on the specific method (we will see more of
this later)

3 getAnywhere : getAnywhere("lm")

4 methods : methods("print")

> getS3method("residuals.HoltWinters")

> getAnywhere("residuals.HoltWinters")

37 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

S4 Classes

Although S3 classes can be quite useful and powerful they
do not facilitate the type of modularization and type
safety that a true object oriented system intends.

For this reason S4 classes were introduced. S4 classes are
much more of an object oriented system with type
checking, multiple-dispatch, and inheritance.

Again, here we want to forget about the classes and center
our attention on the methods.

In the resources directory you’ll find a document describing
S4 classes – this document is highly recommended reading
if you want to get a deeper understanding of the S4
system.

38 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

S4 declaring a class

Lets say we want to construct a class representation for
alignments. What does an alignment contain? At a minimum
we need the names of the species in the alignment, the length
of the alignment, the sequences themselves, and whether we
are dealing with nucleotide data or amino acid data.

> repr <- representation(species = "character",

+ sequences = "character",

+ length = "integer", type = "character")

> setClass("Alignment", repr)

[1] "Alignment"

> A <- new("Alignment")

> species <- c("tiger", "lion",

+ "bear")

> seqs <- sapply(1:length(species),

+ function(i) paste(sample(c("A",

+ "C", "G", "T"), size = 10,

+ replace = T), collapse = ""))

> A@species <- species

> A@sequences <- seqs

> A@species

[1] "tiger" "lion" "bear"

39 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Initialization

> setMethod("initialize", "Alignment",

+ function(.Object, species,

+ sequences) {

+ .Object@species <- species

+ .Object@sequences <- sequences

+ names(.Object@species) <- NULL

+ names(.Object@sequences) <- NULL

+ if (length(sequences) !=

+ length(species)) {

+ stop("length(sequences) != length(species)")

+ }

+ .Object@length <- nchar(sequences[1])

+ names(.Object@length) <- NULL

+ ss <- do.call("c",

40 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Initialization

+ strsplit(sequences,

+ split = ""))

+ if (all(ss %in% c("A",

+ "C", "G", "T",

+ "-")))

+ .Object@type <- "nucleotide"

+ else if (all(ss %in%

+ c("G", "A", "L",

+ "M", "F", "W",

+ "K", "Q", "E",

+ "S", "P", "V",

+ "I", "C", "Y",

+ "H", "R", "N",

+ "D", "T", "-")))

+ .Object@type <- "amino-acid"

41 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Initialization

+ else stop("Unknown character in alignment")

+ return(.Object)

+ })

[1] "initialize"

42 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Methods

We have already seen our first method“inititialize”, this method
is called immediately after the object is instantiated and allows
the programmer to custumize the initialization of an object.
The show method is the S4 analog of print. Now how we
access variables ’@’

> A <- new("Alignment", species = species,

+ sequences = seqs)

> setMethod("show", "Alignment",

+ function(object) {

+ cat("Alignment of length:",

+ .Object@length,

+ "with type:", .Object@type,

+ "\n")

+ })

> show(A)

Where is the bug in this code? 43 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

S4 Generics

In order to make a new generic we need to call the function
setGeneric.

> f <- function(object) standardGeneric("summarize")

> setGeneric("summarize", f)

[1] "summarize"

> setMethod("summarize", "Alignment",

+ function(object) {

+ table(do.call("c",

+ strsplit(object@sequences,

+ split = "")))

+ })

[1] "summarize"

> summarize(A)

A C G T
8 7 5 10 44 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

S4 Nuances

R has pass-by-value semantics what does that mean for
the following code:

> deleteSpecies <- function(alignment,

+ species) {

+ a <- which(alignment@species ==

+ species)

+ alignment@species <- alignment@species[-a]

+ alignment@sequences <- alignment@sequences[-a]

+ alignment

+ }

> B <- deleteSpecies(A, "tiger")

> A@species

[1] "tiger" "lion" "bear"

45 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Useful S4 Functions

showMethods("summarize")

getGeneric("+"), getGenerics()

Example

We want to add a simple method to our alignment class so we
can add alignments. Add a new method using setMethod to
allow the user to perform the following: A1 + A2 which will
construct a new alignment with the species from A1 and A2.
Also, make sure that the alignments are of the same length.

46 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Replacement Methods

As we have already seen R has a somewhat strange type of
function that allows us to modify objects in place.

It is uncommon to define new replacement functions,
however they are used quite frequently in day to day
programming of R.

Two examples are: names and colnames. Type “colnames”
into the R window and hit “tab”, notice the function
“colnames<-”?

47 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Replacement Methods

> a <- matrix(1:16, nrow = 4,

+ ncol = 4)

> colnames(a) <- paste("V", 1:4,

+ sep = ".")

> colnames(a)

> point <- list(x = 1, y = 2)

> x.val <- function(x, value) {

+ x$x <- value

+ }

> "x.val<-" <- function(x, value) {

+ x$x <- value

+ return(x)

+ }

> x.val(point, 10)

> print(point)

48 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Replacement Methods

> x.val(point) <- 10

> print(point)

What does the first print statement print? What about the
second?

49 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Packages

R is broken down into a number of core or base packages
and runtime environment.

How would we see what packages are installed? What
packages are available on the system?

50 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Package Contents

A package consists of the following directories and files:

1 DESCRIPTION : A file describing the contents and version
of the package

2 NAMESPACE : A description of what R and C code will
be available to the loaded package

3 R : R source code which will be available when the
package is installed depending on the NAMESPACE file

4 src : A directory containing C or C++ source code which
can be called directly from the R code in the package

5 man : A directory containing the help files for a given
package, these can be easily created using prompt()

6 data A directory containing data sets available once the
package is loaded

51 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Package Contents

In addition to the directories listed above packages can also
contain the following directories: demo, exec, inst, po, and
tests.
In addition the following files can be in the top level directory:
INDEX, configure, cleanup, LICENSE, LICENCE, and
COPYING.
These directories and files are less often used but sometimes
important, to make a simple package we need only
DESCRIPTION and R

52 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

DESCRIPTION

Package: HMM
Title: An HMM for a K state model
Version: 1.0
Author: James Bullard
Depends: R (>= 2.6.1)
Description: A package for the HMM parsing

of tiling array data
Maintainer: <bullard@stat.berkeley.edu>
License: LGPL

The exact rules for this file can be found at: DESCRIPTION

53 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Example: Making a Simple Package

We now want to build and install a simple R package to
contain the code from this lecture. It is overkill to develop a
package for a simple analysis, but some reasons to develop a
package are:

1 keep data, documentation, and code together

2 Develop code in other languages for use in R (C, C++)

3 Easily distribute the work we have done to collaborators

4 Have a standard structure for maintaining our work

One caveat is that sometimes building the package can be
more trying because we need additional tools in order to get
things to work. In Mac OS X we generally just need XCode and
for windows we need the R tools found at:
www.murdoch-sutherland.com/Rtools.

54 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Example: Making a Simple Package

1 First, see if you can install a package from source,
download the following URL to a local directory and try to
install the package using the command line or the GUI.
xtable

2 Construct a simple package containing one function and
one data set.

3 Install the package using R CMD INSTALL.

4 Test that we can access our functions and data sets using
require or library.

5 use prompt to create a helpfile for one of the functions you
have created.

55 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

The R Workspace

Like most programming environments the startup of R can
be controlled by your environment (e.g. environment
variables, or startup files in your home directory).

The most important environment variable is R LIBS . This
environment variable dictates where packages are installed,
so if you are on a shared system, or a system where you do
not have admin rights then you want to use this variable
to control where packages are installed.

This variable shoulb be set in your .bashrc file (or in your
environment variables widget in windows)

You can check where R will check for packages by using
the .libPaths function. This function additionally allows
you to add directories to the search path.

56 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

The R Workspace

.Platform, .Machine

Additionally, you have a file called .Rprofile which can be
used to set up some initial code.

> dirname(.libPaths())

[1] "/Library/Frameworks/R.framework/Resources"

> basename(.libPaths())

[1] "library"

57 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Examining the R session

Often we want to know what packages / capabilities /
options R is using. There are a number of relevant
functions for examining the R session

> sessionInfo()

R version 2.7.1 RC (2008-06-20 r45965)
i386-apple-darwin9.3.0

locale:
en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices
[4] utils datasets methods
[7] base

58 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Examining the R session

> capabilities()

jpeg png tcltk
TRUE TRUE TRUE
X11 aqua http/ftp
TRUE TRUE TRUE

sockets libxml fifo
TRUE TRUE TRUE

cledit iconv NLS
FALSE TRUE TRUE

profmem cairo
FALSE TRUE

> options()[c("pkgType", "device")]

59 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Examining the R session

$pkgType
[1] "mac.binary"

$device
[1] "pdf"

> R.version

_
platform i386-apple-darwin9.3.0
arch i386
os darwin9.3.0
system i386, darwin9.3.0
status RC
major 2
minor 7.1

60 / 61

Statistics with
R for

Biologists

Introduction

Functions

Debugging

Classes

Packages

The R Session

Examining the R session

year 2008
month 06
day 20
svn rev 45965
language R
version.string R version 2.7.1 RC (2008-06-20 r45965)

61 / 61

