
Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Statistics with R for Biologists

James H. Bullard
Kasper Daniel Hansen

Margaret Taub

Berkeley, California
July 7-11, 2008

1 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Introduction to R

1 Background

2 Using R: Programming environments

3 Getting help

4 Basic R data structures

5 Basic control flow and function definitions in R

6 Reading and writing data

7 Lists

8 String processing

9 Packages

2 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Origins

R is a version of the S programming language developed by
John Chambers at Bell Labs in 1976 to turn ideas into
software, quickly and faithfully.

S was designed to allow people to do statistical analysis
without having to write programs in a language like
Fortran.

R is an open source version of the S language described by
Chambers et al. in the “blue book.”

R was written initially by Robert Gentleman and Ross
Ihaka and released under the GPL in 1995.

3 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Key features

Being open source makes R a very dynamic language -
people are developing new tools in R all the time,
implementing the latest statistical methods. This means
you should keep your version of R up-to-date: a new
release is available every six months.

Because R is a programming language, not just a program,
you can really do anything you want and are capable of
implementing, while also having a variety of pre-existing
tools at your disposal.

Additional functionality can easily be added to R through
the use of packages.

4 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Bioconductor

A whole set of packages, designed specifically for working
with biological data, is available through Bioconductor
(www.bioconductor.org/).

You will all probably be interested in installing packages
from Bioconductor at some point.

You can either install the packages from the command
line, or use the GUI Package Installer. If you use the GUI,
be sure the“Install Dependencies”box is checked before
you install.

> source("http://bioconductor.org/biocLite.r")

> biocLite(c("affy", "ALL"))

5 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

GUI / UNIX command-line interface

Can interact directly with command-line interface by
typing commands at prompt

Good for quick checks or simple calculations that you
won’t want to document or repeat

Not good for multi-step analyses which you may want to
reproduce in the future

6 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Your “development environment”

Want a way of documenting your work so that it is readily
understandable by another person and reproducible

Want an efficient way of interacting with R while working
in a text-editing environment

The important thing is to find something that works well
for you, that makes you feel comfortable and efficient

7 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

For emacs lovers: ESS

ESS (emacs speaks statistics) is the premier environment
(according to Jim and Kasper) for working with and
developing R: ess.r-project.org/

“ESS provides a common, generic, and, useful interface,
through emacs, to many statistical packages. It currently
supports the S family, SAS, BUGS, Stata and XLisp-Stat
with the level of support roughly in that order.” - ESS
manual

ESS is a general environment for statistical computing in
emacs. It can handle a number of other languages for
statistical computing like Stata, SAS, and, xlisp-stat.
However, it is predominantly used with R/S.

8 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

For Mac users: TextMate

Available for free from
software-central.berkeley.edu/

A basic text editor with available application specific
“bundles” to allow special functionality for the document
you are editing

The bundle for R allows for quick and easy interaction
between your code and the R terminal.

9 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Online resources: R website

There are some very useful manuals on the R website,
including “An Introduction to R” and “R Data
Import/Export” : cran.r-project.org/manuals.html

Also informative are the FAQ pages:
cran.r-project.org/faqs.html

There is an R-help mailing list, but be sure to read the
instructions for posting first!
www.r-project.org/mail.html

A local copy of these materials is installed on your
computer along with R and can be accessed through
help.start().

10 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Other online resources

A categorized list of R functions:
www.stat.berkeley.edu/~epurdom/RCommands/

R graphics gallery: addictedtor.free.fr/graphiques/

R color chart: research.stowers-
institute.org/efg/R/Color/Chart/index.htm

11 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Getting help from within R

help(lm): help for a specific function
?lm: an alternative way to call help
help(’for’): for certain functions, need quotes
library(help = ”stats”): gives you information on a whole
package
help(package = ”stats”): another way to get info on a
whole package
help.search(”multivariate normal”): search help-page
keywords (not always useful)
help.start(): launch browser-based help page
RSiteSearch(”multivariate normal”): search R mailing lists,
help pages, manuals
apropos(”package”): searches your R workspace for objects
with that string
example(findInterval): prints example associated with the
function 12 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Example data sets in R

There are many built-in data sets in R which have been
packaged up and can be accessed by the user.

These can be useful for understanding examples, or for
testing out code.

> data()

> data(SpikeIn)

> `?`(SpikeIn)

> matplot(t(pm(SpikeIn)), type = "l")

13 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Some exercises

Example

Find the binary operator that performs modular arithmetic.

Display an example color palette.

Where is there documentation on reporting bugs in R?

How do you set your working directory?

14 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Vectors

> v1 <- 1:10

> v2 <- runif(10)

> v3 <- sample(c("A", "C", "G", "T"),

+ size = 10, replace = TRUE)

> v4 <- v3 %in% c("A", "G")

> v5 <- c("foo", 2, TRUE)

> v6 <- c(2, "3")

Atomic vectors come in 6 different modes: logical, integer,
double, complex, character, and, raw.

An atomic vector contains only basic types, all such types
must be the same.

∀i , j ∈ 1, ...length(V) mode(i) == mode(j)

15 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Vectors: modes and conversion

A vector is the most basic entity in R. To understand R,
what does this code do: length(2)?

Everything is a vector!

We can get and set the mode of vectors using mode, and,
storage.mode.

We can change the mode of vectors using as.*

A character vector is not like a C character vector. What
does length("") return? How about length("unam")?

NA is special. What does length(NA) return?

What is a length 0 object in R?

> as.numeric(v6)

> as.numeric(v5)

16 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Some useful vector-related functions

> seq(1, 20, by = 2)

> seq(0, 20, along.with = c(1:101))

> seq(0, 20, length.out = 101)

> rep(1:5, 5)

> rep(1:5, 1:5)

> rep(1:5, each = 2)

> paste("chr", 1:23)

> paste(LETTERS[1:5], rep(1:5, each = 5),

+ sep = "")

> v1 <- c(1, 2, 6, 7, 4, 3)

> l1 <- LETTERS[1:6]

> l1[sort(v1, index.return = TRUE)$ix]

17 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Some quick technical details

In R, NA is generally used to represent missing data. It will
often cause a whole arithmetic expression to be evaluated
as NA.
The values -Inf, Inf and NaN have real arithmetic
meaning.
Arithmetic on decimal numbers has limited precision - but
it is not a bug! Please don’t report it to the R bug
reporter. (See R FAQ 7.31.)

> sum(c(2, 3, NA, 6))

> 5/0

> 0/0

> -5/0

> c(2, 3, NA, 0)/c(3, 0, 5, 0)

> 0 * Inf

> sqrt(2) * sqrt(2) == 2

18 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Indexing

There are four types of vectors which can be used to index
another vector, for either subsetting or assignment:

A logical vector

A vector of positive integers

A vector of negative integers

A vector of character strings (for named vectors)

Indexing is a critical skill to cultivate in R. By proper indexing
one can often make computations much more efficient and save
programmer time.

19 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Indexing

> v3[v4]

> v1[seq(1, 9, by = 2)]

> v1[c(5, 1, 9)]

> v1[-c(2, 4)]

> names(v1) <- LETTERS[1:10]

> v1[c("A", "D", "F")] <- 20

> v1[v1 > 5] <- 5

> v1[LETTERS[1:6]][c(2, 4)]

20 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Matrices

Matrices can be formed from a vector using the function
matrix.

More fundamentally, matrices or multidimensional arrays
are nothing more than vectors with a non NULL dimension
vector.

Matrices can be subsetted just like vectors.

> m1 <- matrix(1:10, nrow = 5, ncol = 2)

> print(m1)

> m2 <- matrix(1:10, nrow = 5, ncol = 2,

+ byrow = TRUE)

> print(m2)

What is the default orientation for storing a vector as a matrix?

21 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Matrices

> m1[c(1, 3, 5),]

> m2[m2[, 1] > 3,]

> rownames(m1) <- LETTERS[1:5]

> m1[c("A", "B"),]

> matrix(1:100, nrow = 10)[matrix(1:10,

+ nrow = 5)]

> V <- 1:100

> array(V, dim = c(5, 5, 4))

> dim(V) <- c(5, 5, 4)

> print(V)

> rbind(1:5, 11:15)

> cbind(1:5, 11:15)

22 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Matrices

> m3 <- matrix(rnorm(50), 25, 2)

> m3[order(m3[, 1]),]

> ii <- order(x <- c(1, 1, 3:1, 1:4,

+ 3), y <- c(9, 9:1), z <- c(2,

+ 1:9))

> rbind(x, y, z)

> rbind(x, y, z)[, ii]

23 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Assignments in R

R style

You may have noticed R has two forms for assigning: =, and,
<- (actually there are three, but lets keep it simple). The <-
form is the traditional form and is really the assignment
operator. We want to try to use that anywhere we are
assigning a value to a variable. The = form can also be used as
the general assignment operator, however it is the only form for
passing in named arguments to functions and naming elements
in vectors or lists. Therefore, although in the code below both
lines are the same, it is preferable to use the 1st line.

> A <- c(a = 1, b = 2)["a"]

> A = c(a = 1, b = 2)["a"]

24 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Attributes

For the most part attributes exist behind the scenes. A
good example of this is a matrix. We can use a matrix for
a long time without realizing that the only thing that
distinguishes a matrix from a vector is an attribute dim.

dim, names, dimnames, colnames, length, class, attributes,
attr.

Attributes can be both determined, and assigned using
these operators: e.g. length can be changed by doing
length(V) <- 10.

25 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Attributes: examples

> V <- rnorm(100)

> length(V) <- 10

> print(V)

> X <- matrix(rnorm(10), nrow = 2,

+ ncol = 5)

> attributes(X)

> colnames(X)

> rownames(X)

> colnames(X) <- paste("COLUMN-",

+ 1:5, sep = "")

> attributes(X)

26 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Recycling: A key to understanding vectorization

In a vectorized language when we do, for example x =
1:10; y = 11:20; x + y we are really doing
x [i] + y [i], i ∈ 1, . . . , 10

A natural question to ask is what happens when
length(x) != length(y)

Recycling happens!

Recycling simply repeats elements from the smaller vector
until it finishes with the bigger vector. When we do 1 +
c(1,2,3) we are really recycling the vector containing 1 3
times

Try computing, for example c(2,3) + c(3,4,5), and
compare that to c(2,3) + c(3,4,5,8).

27 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Recycling: A key to understanding vectorization

Always pay attention to warnings which indicate you have
added vectors with “non-matching” dimensions - 9 times out of
10 you have made an error. The rules for warnings are that if
you have (length(x) %% length(y)) == 0 no warnings
will be given, and otherwise you will get a warning.

28 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Working with vectorization and recycling

> H <- rep("hello", 10)

> W <- rep("world!", 5)

> print(paste(H, W))

> v1 <- 1:20

> v1[c(TRUE, FALSE)]

> matrix(v1, 5, 5)

29 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Matrix algebra

R can be used as a matrix algebra calculator.

As we have seen c(1,2,3) * c(1,2,3) performs
element-wise multiplication.

In order to perform matrix multiplication we do:
c(1,2,3) %*% c(1,2,3).

> X <- rnorm(100)

> dim(X) <- c(10, 10)

> Y <- t(X) %*% X

> dim(Y[, 1] %*% X[, 1:5])

30 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Other matrix functions

Other useful matrix functions are:
I solve : X−1

I t : X t

I outer (%o%) : outer product of two vectors: xx t

I kronecker (%x%) : Kronecker product of two matrices
I crossprod, tcrossprod : compute AtX , compute AX t

I eigen : compute the eigen decomposition of a matrix

> Y[, 1] %o% Y[, 2]

> X <- rnorm(10)

> Y <- rnorm(10)

> W <- X %*% Y

> Z <- X %*% t(Y)

> Q <- matrix(runif(100), nrow = 20,

+ ncol = 5)

> R <- Q %*% c(1, 2, 3, 4) + rnorm(20)

31 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

if-else

R offers the standard control structures if, and else.

> x <- 5

> if (x > 0) {

+ x <- x - 1

+ print(x)

+ } else {

+ x <- x + 1

+ print(x)

+ }

What happens when we execute the following code?

> vec <- rnorm(10)

> if (abs(vec) > 2) {

+ 1

+ }

32 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

if-else

What did we expect would happen?

In addition R offers the ifelse construct:

> ifelse(abs(vec) > 2, 1, 0)

Also the R function switch can be useful.

> strand <- "add"

> ff <- switch(strand, add = function(...) {

+ Reduce("+", list(...))

+ }, subtract = function(...) {

+ Reduce("-", list(...))

+ })

> ff(1, 2, 3)

33 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

for and while loops

As with most programming languages R has both a for
loop and a while loop

It used to be the case that the for loop was dreadfully
inefficient and good R programming involved vectorizing
everything

We still want to vectorize as much as possible, however
the for loop is not as bad as before

> for (i in 1:10) {

+ print(i)

+ }

> while (i > 5) {

+ print(i)

+ i <- i - 1

+ }

34 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Other control-flow

repeat, break, next

?Syntax

> i <- 1

> repeat {

+ if (i > 10)

+ break

+ print(i)

+ i <- i + 1

+ }

35 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Some useful logical operators

As in many other programming languages, comparison
equality is done using ==.

Single OR or AND operations are performed using || and
&&, respectively.

The functions any and all take the union or intersection,
respectively, of a vector of booleans.

Vectorized OR and AND operators are given by | and &.

> NULL || TRUE

> TRUE || NULL

> any(c(TRUE, FALSE, NULL))

> all(c(TRUE, NULL, NULL))

36 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Functions: basic syntax

> fx <- function(x, y) {

+ x^y

+ }

> fx(1:10, 1:10)

> fx(4, 2)

> fx(1:10, 2:5)

In R functions are objects - this is demonstrated by how
they are defined, with the assignment operator <-.

The last expression of a function is the default return
value. Alternatively, we can return from functions using
the return function.

37 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Alternatives to loops in R

Often, we want to perform a functional operation on all
the rows, or all the columns, of a matrix. Rather than
using a loop, the function apply is great for this.

> x <- cbind(x1 = 3, x2 = c(4:1,

+ 2:5))

> dimnames(x)[[1]] <- letters[1:8]

> apply(x, 2, mean, trim = 0.2)

> col.median <- apply(x, 2, median)

> row.median <- apply(x, 1, function(x) {

+ median(x)

+ })

> rbind(cbind(x, Rmed = row.median),

+ Cmed = c(col.median, median(x)))

38 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Reading from a file

R can read data in a variety of different forms: csv,
tab-delimited, stata, excel, relational databases, etc.

read.table: generally a good function to start with, can be
very flexible.

readLines: good to try if you’re having problems with
read.table.

scan: can be faster than read.table but more difficult to
deal with multiple types.

help.search("read")

For our purposes, data can be read right from the internet,
e.g.: scan("http://biostat-
09.berkeley.edu/∼bullard/courses/T-berkeley-
08/data/jumbled.dta")

39 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Writing to a file

For writing a data.frame to a file, the easiest function to
use is write.table.

Also very useful is the ability to save R objects or sets of R
objects using the function save. You can save your whole
workspace using save.image.

To load data that you have saved, use the function load.
This can be much faster than reading it in with read.table,
and can save you from repeating any data cleaning.

> my.data <- rnorm(100)

> save(my.data, file = "saved_data.rda")

> load("saved_data.rda")

40 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Example problem: Indexing

Example (Jumbled data)

A colleague approaches you hoping you might be able to help
with some “data cleaning” issues. The colleague has
measurements from a microarray experiment, however, due to
some post-processing issues all of the intensity values have
been jumbled. In the file (data/jumbled.dta) you will find the
results of 30 microarray experiments where every 30th number
corresponds to one array, that is: element 1 and 31 are from
the same chip. First, your colleague asks you to calculate array
means for the data. Furthermore, your colleague asks if you
can summarize the probe intensity values into probe-set means.
Each experiment has 20 probesets of length 20 which are
stored in sequential order ie. 1,...,20 are measurements for one
probe set.

41 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Example problem: Matrix operations

Example (Least Squares)

Based on your success with the last assignment your colleague
asks if you can help him with another problem he is having.
After converting the microarray experimental data to a matrix
he wishes to fit a linear regression model of the form
Yi ,j = αj + βjcasestatusi ,j + εi ,j . Here, j is an index over
probesets and i is an index over microarray experiments. He
tells us that each microarray corresponds to an experimental
subject who was identified as either a case or a control. Yi ,j is
the mean expression level from the previous example. The
case/control vector is located in (data/case-control.dta). Fit a
linear regression model and estimate both α and β for the 20
probesets. What about standard errors? p-values?

42 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

data.frame

Data frames are what you get when you do read.table.
For all practical purposes a data.frame is a matrix,
however it has a number of disadvantages and advantages
as compared to matrices.
In general, each row of a data.frame can be thought of as
a single data record.
The different columns of a data.frame can have different
types, which allows your variables to be of different types
(numeric, character, factor)

> bases <- sample(c("A", "C", "G",

+ "T"), 8, replace = TRUE)

> obs <- runif(8)

> dta <- data.frame(obs, bases)

> names(dta)

> dta$bases
43 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

What is a factor?

Factors are used to represent categorical data.

They are a discrete set of levels which are associated with
vectors of objects.

When you read in data with read.table anything that looks
like a character gets read as a factor.

Factors are useful for generating tabular data.

Factors are enumerations / they are stored in a very
efficient manner and when applicable they should be used
instead of strings.

44 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

What is a factor?

> myColors <- colors()[sample(1:10,

+ size = 200, replace = TRUE)]

> write.table(data.frame(age = runif(200,

+ 20, 40), colors = myColors),

+ file = "tmp.dta", row.names = F)

> dta <- read.table("tmp.dta", header = TRUE,

+ stringsAsFactors = TRUE)

> class(dta[, 2])

> table(dta[, 2])

> levels(dta[, 2])

Often we mistake numbers/strings for factors and vice-versa we
will see examples of this throughout the week.

45 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Example problem: Reading and writing data

Example (Mystery data)

A colleague sends you a data file saying that he can’t open it
and hopes that you might be able to convert it to a .csv file.
He believes it contains the following columns: ”age”, ”height”,
”weight”, ”personality”, and, ”died.” The file is located in:
(data/mystery.dta).

Read in the data using either scan, read.table, or another
of the read.* variants.

Make sure that the data.frame has the appropriate
column names added.

Write the data into a .csv file.

Check that the .csv file is valid.

Print the first couple lines and the last couple lines (head,
tail might be useful)

46 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Example problem: Unknown data format

Example (Yeast data)

Your goal is to read in data from the files
(data/saccharomyces cerevisiae.gff) and which contain
chromosomal features data for the S. cerevisiae genome, as
obtained from www.yeastgenome.org. You may need to try
multiple functions, and look at the different function arguments
carefully in order to do this. You may particularly want to think
about using readLines and grep.

47 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Lists

As mentioned before vectors (and hence matrices) can
store only “raw” values of the same type.

Quiz: What happens here:

> c(2, "jim", TRUE)

R also offers the list data structure which can be used to
save objects of different types and different sizes or even
different dimensions.

48 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Lists

> lst <- list(name = "jim", age = 29,

+ chol = rnorm(10, 160, 10),

+ test.mat = matrix(1:100, 5,

+ 20))

> class(lst[1])

> names(lst)

> class(lst[[1]])

> class(lst[[4]])

lst[i] always returns a list, whereas lst[[i]] returns the ith
element no matter what the class!

49 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Further avoiding loops with *apply

This slide is very important. The apply family of functions are
used everywhere and good R programmers rely on them heavily.

In addition to apply we have:
I lapply : traverses a vector or list producing a new list by

applying FUN to each of its components
I sapply : similar to lapply, however sapply does some “s”

implification which often gives you results which you didn’t
expect (or ones which are easier to work with)

I mapply : applies a function to a set of arguments
I tapply : apply a function to data grouped by a particular

index factor

Also, recently R introduced some higher-order functions
found in Common Lisp: Map, Filter, and, Reduce.

50 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

More Lists

> lst <- lapply(runif(10), function(r) {

+ if (r > 0.5)

+ rnorm(100)

+ else rnorm(100, 2)

+ })

> mat <- do.call("cbind", lst)

Can we do without the lapply? Try to generate the same data
using ifelse. What does the call to do.call do?

51 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Strings

R is not the best language for string processing, however a
number of natural functions are available to handle strings.

strsplit, grep, charmatch, substr, nchar, paste

To build strings we have:

1 paste : vectorized function for building strings, try
paste("chr", 1:23)

2 sprintf
3 as.character
4 toString

> sprintf("%10.20g", 1.10001)

> sprintf("%10.1000g", pi)

> toString(1:10)

52 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Working with biological strings

Bioconductor offers the Biostrings package which has a
number of functions for taking reverse-complements,
complements, and a number of other functions for
processing sequences of nucleotides.

Example (Mismatch probes)

In the directory“data/pm.fasta”there is a fasta file with perfect
match probes (A perfect match probe perfectly targets the
gene of interest, i.e. if our gene of interest is: “ACG”, then our
perfect match probe will be: “TGC”). Our colleague wants us to
construct a new fasta file where we have both the perfect
match and the mismatch probes next to one another. A
mismatch probe is identical to the perfect match probe but the
middle base has been changed (from our previous example, we
would have: “TCC” as our mismatch probe).

53 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

More on R packages

We will cover packages in much greater detail in a future
lecture but it is important to understand them
operationally.

The R system is essentially broken down into a number of
core or base packages and a runtime environment.

We can see what we have currently in our R session using
sessionInfo.
There are two main repositories for R packages - CRAN
and Bioconductor:

I cran.r-project.org/src/contrib/PACKAGES.html
I bioconductor.org/packages/release/BiocViews.html

It should be stressed that the quality of many of these
packages is quite low, however there are a number of great
third party packages as well: XML and MASS to name
two.

54 / 55

Statistics with
R for

Biologists

Background

Using R:
Programming
environments

Getting help

Basic R data
structures

Basic control
flow and
function
definitions in R

Reading and
writing data

Lists

String
processing

Packages

Packages: Seeing what’s available

In order to see what packages we have installed we can use
the installed.packages.

To see what packages are available at a CRAN mirror we
can do something like available.packages.

> install.package("xtable")

For Bioconductor it is a bit different

> source("http://bioconductor.org/biocLite.R")

> biocLite("GO")

What does the source do?

55 / 55

