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What can we do with statistics

Common goals with a statistical analysis

Estimation

Hypothesis testing

Understanding

Prediction

Get low p-values and publish

These goals might look similar, but in actual use cases they can
lead to surprisingly different strategies for analyzing data.
In this lecture we will focus on hypothesis testing.
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The two-sample location problem

We will start by considering a classical problem: the
two-sample location problem. We will attack this problem
using a variety of methods, and essentially touch many
important concepts in modern statistics.
We are observing observations from two groups – this could be
gene expression for two different organisms, blood pressure
from males/females, etc.
We assume that the observations are iid. (independent,
identically distributed) within each group. We also assume that
the distributions of observations from the two groups are equal,
except a location shift (mean shift).
The objective is to decide whether there is any difference
between the two groups.
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Testing: setup

The basic ingredients in the testing framework are

A model (assumptions)

A hypothesis

A test statistic

Contrary to what some people seem to suggest, there is always
a model. Sometimes the model is really obscured (especially if
you read a paper).

test statistic

A test statistic is some univariate function of the data. It
should be small when the hypothesis is true and big when the
hypothesis is false

(A better description for big/small is perhaps “extreme”, “less
extreme”)
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Example: t-test

The t-test is a solution to the two-sample problem

(Classic) model the two groups are both normal distributed
with the same variance. They differ in their mean
(location).

Hypothesis the location of the two groups are the same.

Test statistic the difference in mean between the two groups
divided by an estimate of the standard deviation
of the difference. Also known as the t-statistic.

It is clear that the t-statistic is“extreme”(either very positive or
very negative) if the location is different and close to zero if the
location is the same.
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Example

Let us simulate some data and compute the t-statistic. Usually
the t-statistic is the difference between the means in the two
groups, divided by an estimate of the standard deviation of the
difference in means. The are different ways to get the standard
deviation estimate, we will be using the standard one (see later
though). How this estimate is derived should be discussed in
any decent intro level statistics book (left for some serious
self-study).
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Example, cont’d

> group1data <- rnorm(10, mean = 4,

+ sd = 1)

> group2data <- rnorm(13, mean = 7,

+ sd = 1)

> t.stat <- function(x, y) {

+ n1 <- length(x)

+ n2 <- length(y)

+ variance.estimate <- ((n1 -

+ 1) * var(x) + (n2 - 1) *

+ var(y))/(n1 + n2 - 2)

+ (mean(x) - mean(y))/sqrt(variance.estimate *

+ (1/n1 + 1/n2))

+ }

> t.stat(group1data, group2data)

> t.test(group1data, group2data,

+ var.equal = TRUE)$statistic

Save the data for later!
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When is a test statistic big?

So now we have a test statistic t and we can compute the
value on our data t(data). We know that a big value indicates
that the hypothesis might be false.
But how big is “big”?
We need an appropriate scale to measure the test statistic on in
order to decide how big it is.
And we need a cutoff on that scale in order to decide whether
it is too big.
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The distribution of the test statistic

The standard approach to this question is to answer the
question: “Assuming the hypothesis is true, how likely is our
observation”. This is an interpretable probability scale.
This consists of two interlinked steps

Find the distribution of the test statistic when the
hypothesis is true.

Compute the probability of a more extreme event
happening and choose a cutoff.

p-value

The p-value is the probability of observing a more extreme test
statistic when the hypothesis is true.
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distribution of a t-statistic

So we want to compute the distribution of the t-statistic when
the model is true. To do so we simulate repeatedly from a
situation where the means are the same:

> group1 <- replicate(1000, rnorm(10,

+ mean = 4, sd = 1), simplify = FALSE)

> group2 <- replicate(1000, rnorm(13,

+ mean = 4, sd = 1), simplify = FALSE)

> tdist <- mapply(t.stat, group1,

+ group2)

Example

What does this distribution represent? Is our observed
t-statistic extreme? What is the p-value. Try different values
for the mean and the standard deviation.
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Questions

There are a few things we did, that might seem wrong: We
used some specific values of the mean and the variance in the
simulation. How do we get these values for“real”data where we
do not know the truth? Would we get another result if these
numbers change? Why did we use 4 for the mean and not 7
(the two true means were 4 and 7) and why not a 3rd number?
Here a bit of theory comes in great handy. It is not at all
obvious, but the distribution we get is actually independent of
what value we used for the mean.
That is not always the case, so watch out when you create your
own test statistics.
What we did is ok, but it required some values (the truth) we
cannot know in a real situation.
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Exact / Asymptotic distribution

In some cases it is possible to compute the exact distribution of
the test statistics under the hypothesis. In (more often) other
cases we resort to an asymptotic argument, where we can find
the distribution of the test statistic if the number of
observations is big enough.
For the t-statistic, the exact distribution is a t-distribution with
n − 2 degrees of freedom, when the observations are normal
distributed.

Example

How does this compare to our simulations? Does our
observations support the hypothesis?
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Interlude: Unequal variance

It is straightforward to extend the t-test to the situation where
the variances of the two groups are different. You simply
replace the estimate of the standard deviation of the difference
in means in the denominator with a slightly different estimate.
This should be used in most cases. It is called a Welsch t-test.
However, since we estimate the variance in each group
separately, you need to consider whether you have enough
observations in each group to do this reliably.
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Rejecting the hypothesis

When we reject the hypothesis we say “the is sufficient evidence
in the data to support the conclusion, that the hypothesis is
wrong”.
When we accept the hypothesis we say “our data seems to be
in good correspondence with the hypothesis.” Or “there is not
sufficient evidence for concluding that the hypothesis is wrong”.
These two statements are not symmetric: rejecting the
hypothesis is “stronger” than accepting it.
This is a basic fact of science, we don’t prove theories, we fail
to disprove them.
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Normality

You often see stated that the data has to be normal distributed
in order for the t-test to work. Is this really true? Somehow it
would make sense to compute the statistic no matter what –
right?
We have seen that the mean of a large number of iid.
observations is approximately normal (CLT) so perhaps we can
use the t-statistic anyway. How well this approximation works
depends on the number of observations and what the “true”
distribution is. We still assume the data are iid. except for the
location shift.

Example

Examine the t-test in the case that we are sampling from a
gamma distribution with shape 1. Try group sizes of (50,60)
and (10,15). Try with a shape parameter of 10. What about
other distributions?
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P-values and power

We have computed some p-values. Often we accept/reject the
hypothesis bases on whether the p-value is greater or smaller
than some cutoff – typically 5% (mainly historical reasons).
Having the right distribution for the test-statistic makes it
certain that we have the right interpretation of the p-value.
This is essentially tied to how often we accept the hypothesis if
the hypothesis is true.
But in real life we are also interested in how good we are at
rejecting the hypothesis, if the hypothesis is false. This is called
power, and is an important way to compare tests.
But power is much harder to calculate, because what does it
mean that the hypothesis is false? What alternative are we
considering?
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A permutation test

Permutation tests can be very powerful. They are based on the
same ideas we have just seen.
Let us consider the t-test example. We will still use the
t-statistic, but we will use a different distribution (scale) to
measure it with.
The basic idea is that if the two groups have the same location,
all data are iid. – the group label has no influence on the
outcome. So we could generate samples from the hypothesis
just by re-shuffling the group labels.
This has to be done many times in order to get a distribution.
This is the main insight behind permutation tests.
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Example

Permute the group labels 1000 (10000) times and compute the
permutation distribution. Below is one permutation:

> alldata <- c(group1data, group2data)

> idx <- sample(1:23, size = 23,

+ replace = FALSE)

> group1new <- alldata[idx[1:10]]

> group2new <- alldata[idx[11:23]]

> t.stat(group1new, group2new)

[1] -0.6371764

See replicate. What is the conclusion this time?
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A step back

Let us be clear here. We have now seen

One statistic – the t-statistic (two if you count the Welsch
t-statistic)

3 ways of generating a reference distribution of this
statistic – using a t-distribution, using a permutation test
and straight simulation.

A statistical test is a combination of a test statistic and a
reference distribution. How effective a test statistic is depends
on both.
The reference distribution needs to be “right” in order for the
p-value to be interpretable. Without an interpretable p-value, a
cutoff is meaningless.
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Permutations test, comments

We just computed a (large) number of permutations.
The number of permutations is finite. If the number of
observations is even remotely big, the number of possible
permutations is astronomical (but it can be “tiny” if there a few
observations).
Sometimes, clever arguments (often based on symmetry
arguments) and good approximations makes it possible to
indeed compute a p-value as if all possible permutations have
been considered. This is tough stuff.
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Permutation tests, comments cont’d

Permutation tests (sometimes called exact tests) can be very
useful. Some further comments

They can be very computer intensive, especially if you
need really small p-values.

They do not provide confidence intervals.

They (can) operate under somewhat different assumptions
(one point of view is that the grouping is randomly
assigned and the observations are fixed).

There are examples of complicated models where it is not
clear that this methodology can be used.

They require a decent number of observations.

In general permutation tests are probably under utilized,
although that depends on whom you talk to.
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Non-parametric tests

There is also a whole suite of tests that are called
non-parametric tests. The idea is to be a bit more flexible
regarding the distribution of the data.
Or perhaps rather construct test statistics that are more
“robust”.
For example the mean is quite affected by outliers, whereas the
median is not.
Non-parametric tests often use functions like median and ranks.
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The Mann-Whitney test

If we say that the two distributions are the same, but just differ
in their location (center), we could construct a test statistic
based on how often one groups observations are greater than
the other. Since there is no natural pairing, we set

Zi ,j =

{
1 if Xi < Yj

0 otherwise

(i , j denotes the observations in the two groups)
We then compute

U =
1

IJ

I∑
i=1

J∑
j=1

Zi ,j

if the two locations are about the same, U should be close to
1/2, otherwise it should be close to 1 or 0.
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Wilcoxon rank-sum

There is another statistic which is very similar:

W =
I∑

i=1

Risign(Xi )

with Ri being the rank of Xi .
When there are no ties in the data, U = W + const, so the two
test statistics essentially have the same value (and hence the
same distribution).
The reference distribution is obtained either by large sample
theory (asymptotic arguments) or by permutation.
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Do it!

Example

The R function for a Mann-Whitney and Wilcoxon rank sum
test is wilcox.text. Use it on our data. Compute p-values based
both on a permutation test approach and based on an
asymptotic approach (see the exact argument). What is your
conclusion?
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Summary so far

So far we have seen the following solutions to the two-sample
problem

t-statistic with an (asymptotic) reference distribution.

t-statistic with permutation based reference distribution.

Mann-Whitney with asymptotic reference distribution.

Mann-Whitney with permutation based reference
distribution. .

All of them gave similar answers to our problem.
There are differences though (later).
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Interlude: test names

There are many statistics with similar (or exactly the same)
names. There are at least two Wilcoxon test statistics
(rank-sum and signed-rank) and (at least) two ways of
obtaining p-values.
What does the statement “I made a Wilcoxon test” cover?
This becomes way more bewildering when one talks about a
“chi-square test”.
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Interlude: one-sample location problem

There is a similar one-sample location problem. Here we have
one group and we wish to assess whether the group has a
specific location.
Paired two-sample problems reduce naturally to a one-sample
problem. This is often a very powerful approach.
(In paired two-sample problems, every observation from one
group is naturally matched to an observation from the other
group – for example blood pressure before and after treatment).
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Parametric / Non-parametric – what is the big
deal?

Much has been written about whether you should prefer one
over the other.
In this series of examples, the main assumption that all
methods make is the assumption of independence (and
identical distribution, but that can be “fixed”). And that is very
hard to verify and can be tough to really believe.
How you get the p-value (the reference distribution) is
important.
In this specific case (the two-sample location problem), there is
ample evidence (theoretical arguments as well as simulation
studies) that show you should always do a Mann-Whitney.
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Power simulation

Besides handling outliers better, the reason for preferring the
Mann-Whitney test is power – it is better at rejecting a false
hypothesis (more precise: at worst, it is a little worse than the
t-test, at best it is a lot better).
We will do a simulation experiment to show this, using the
t-distribution as error model.
First we examine the level of the test: we simulate data where
the hypothesis is true, and examine the p-values. If the
interpretation is correct, the p-values should be uniformly
distributed.
Then we examine the power of the test when the alternative is
a shift of 1 and the significance cutoff is 5%
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Back to reality. . .

We consider data from Lee et. al. 2007, Nature Genetics, A
high-resolution atlas of nucleosome occupancy in yeast.

regions occupied in the Yuan et al. study8 (versus the 60% expected;
hypergeometric P o 2.22 ! 10"308), indicating a significant corre-
spondence between the two data sets. However, only 32% of
the centers of our well-positioned nucleosomes are within 10 bp
(51% within 20 bp) of the centers of well-positioned nucleosomes in
the Yuan et al. study8, further indicating that the data sets are not
identical (Fig. 1).
The HMM also generated an index of nucleosome positions across

the whole genome (Table 1), detecting 40,095 well-positioned and
30,776 ‘fuzzy’ nucleosomes. These 70,871 nucleosomes encompass
9.8 Mb or 81% of the non-repetitive genome. Nucleosomes encompass
87% of transcribed sequence but only 53% of intergenic sequence.
Similar estimates are obtained by counting the proportion of probes
detecting above the average linker signal intensity learned by the
HMM (log(ratio)¼ "0.66): 91.6% of transcribed sequence was above
this linker threshold as compared with 57.3% of intergenic sequence.
Because the HMM nucleosome calls do not explicitly capture many

of the subtleties in the relative occupancy
data, including differences in internucleoso-
mal occupancy (for example, Fig. 1), our
subsequent analyses focused on occupancy
ratios from the smoothed tiling path data.

General features
Several independent studies of nucleosome
occupancy at varying degrees of resolution
concur that intergenic regions are depleted of
nucleosomes as compared with coding

regions7,9, a trend that is also obvious in our data (Figs. 1 and 2a). For
example, Yuan et al.8 identified nucleosome-depleted regions (NDRs)
of B150 bp positioned, on average,B200-bp upstream of annotated
genes. If promoter depletion of nucleosomes is associated with
promoter activity, then we expect NDRs to align with TSSs as opposed
to start codons. To examine this, we calculated the average nucleosome
occupancy of probes within a region 50-bp upstream and 50-bp
downstream of the TSS of 5,015 high-confidence transcripts (see
Methods) derived from a high-resolution map of the yeast transcrip-
tome12. We found that the 50-bp region that lies upstream of the TSS
of verified transcripts is far more depleted of nucleosomes than are the
corresponding downstream regions (Fig. 2a). This observation is
consistent with the view that promoters of active genes are depleted
of nucleosomes, presumably to permit protein-binding events
required for gene expression activity7–9,17.
Gene expression has been reported to correlate inversely with

nucleosome occupancy in promoters: highly expressed genes contain
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Figure 1 Distribution of nucleosomes around the CHA1 and HIS3 promoters. (a) A 2-kb region on chromosome 3 surrounding the CHA1 promoter. Blue
graph is derived from Yuan et al.8; each vertical line represents the average probe intensity log ratio between nucleosomal and whole-genome DNA at that
position. Ratios are represented on a log2 scale (the graph has been truncated at "1 to allow closer inspection of positioned nucleosomes); a positive signal
represents nucleosomal occupancy. Green graph represents data from this study; individual probes are represented by vertical lines but, owing to the data
density, the probes are too close to distinguish. Blue and green boxes represent HMM-predicted nucleosome positions derived from Yuan et al.8 and this
study, respectively; edges have been trimmed slightly to make them more distinct, and the more lightly shaded boxes represent delocalized nucleosome calls.
Gold boxes represent the position of nucleosome locations determined by Moreira and Holmberg15. Red boxes indicate annotated ORFs; the arrows represent
the direction of transcription. (b) Same as in a, but showing the HIS3 region on chromosome 15 (nucleosome locations determined by Sekinger et al.16).

Table 1 Nucleosome content of the genome

Coverage (bp)

Fraction of total genome

(total intergenic / total transcribed)

Number of

nucleosomes

Array probe coverage 12,068,004 1 (1 / 1) N/A

Well-positioned nucleosomes 4,970,908 0.41 (0.36 / 0.42) 40,095

Delocalized (fuzzy) nucleosomes 4,801,292 0.4 (0.17 / 0.45) 30,776

Total nucleosomal DNA 9,772,200 0.81 (0.53 / 0.87) 70,871

Non-nucleosomal (‘linker’) DNA 2,295,804 0.19 (0.47 / 0.13) 32.4 bp average length
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They use a tiling microarray to probe the yeast genome. As a
result they get data where for each 4bp they have an intensity
measure related to the nucleosome occupancy at that position.
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Their Question

For each “region” in the genome, they compute a nucleosome
occupancy score, which is essentially an average of the probe
measurements inside that region.
This allows them to compute a nucleosome occupancy score for
each “gene”, “50 kb upstream of each transcription start site”,
etc.
They now want to conclude something like “the nucleosome
occupancy is (high) in (genes)” where () could be changed
depending on the question of interest.
In order to make this a bit easier they divide their regions into
2-3 classes. Examples are “within gene” vs. “upstream of gene”
vs. “downstream of gene”. Another example is “highly expressed
gene” vs “medium expressed genes” vs “low expressed genes”
(where the gene expression is estimated using a different
experiment).
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Their figure

prominent NDRs7,8,17, and genes expressed at low levels tend to have
promoters that are more occupied by nucleosomes. We find a similar
trend in our data (Fig. 2b). When we divided the 5,015 verified
transcripts into three classifications on the basis of transcript abun-
dance12 and tested whether expression correlated with a particular
nucleosome distribution, we found that the distribution of nucleosome
occupancy in the promoters of these three sets of transcripts is distinct.
Our data also show that nucleosome occupancy within coding

regions correlates with transcription level, but in the opposite manner.
Specifically, highly expressed genes are significantly more occupied by
nucleosomes than are genes expressed in small amounts or not at all
(Fig. 2c). This observation also holds true when genes are separated
by transcriptional frequency rather than by steady-state mRNA levels
(ref. 18 and data not shown). When the nucleosome occupancies of
genes expressed in different amounts are compared, the distinctions
are statistically significant (t-test, P o 1 ! 10"15 for all three expres-
sion levels). A possible explanation for the observed patterns of
occupancy is that the act of transcription promotes or requires form-
ation of the ordered nucleosome structures that we observe within
genes, perhaps by increasing residence time of the Rpd3S complex19,20.
When we examined regions of the genome on the basis of their

annotations, we found that nucleosome occupancy preferences
generally depend on the genomic feature. For example, coding regions

and centromeres are the most highly occu-
pied, whereas unique and divergent inter-
genic regions (that is, unidirectional and
bidirectional promoters) are the most
depleted of nucleosomes (data not shown).
Here, we define intergenic regions as
sequences that do not encode protein
(including 5¢ and 3¢ UTRs). Although all
intergenic regions are nucleosome depleted
relative to protein-coding regions, convergent
intergenic segments that are unlikely to be
promoters are significantly more occupied
than unique and divergent regions (Mann-
Whitney test, P o 2.2 ! 10"16), consistent
with the idea that the most depleted inter-
genic regions are promoters.

TSSs define a nucleosome occupancy
signature
The hypothesis that promoters define the
boundary of nucleosome-free regions is sup-
ported by gene-by-gene observations. For
example, the SAC7 gene shows an extended
5¢ UTR of greater than 500 bp when its ORF
is aligned with its corresponding transcrip-

tion segment12. In this case, the NDR is directly upstream of the TSS
and a nucleosome is positioned precisely at the start of the transcript
(Fig. 3a). On a global scale, when the nucleosome occupancy patterns
of all promoters are averaged, the NDR is evident and most genes
contain a consistent ladder of well-positioned nucleosomes at their
5¢ ends immediately downstream from the NDR (Fig. 3). By precisely
aligning nucleosome occupancy signal by TSSs and averaging all genes,
the average nucleosome signature is clearly oriented at TSSs (Fig. 3b,
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Figure 3 NDRs align with TSSs and not with translation start sites.
(a) Nucleosome occupancy within a 2-kb region on chromosome 4. Green
graph represents average probe intensity ratio (log2 scale), dark green
boxes show the location of HMM-called well-positioned nucleosomes, lighter
green boxes are delocalized nucleosomes, blue boxes are transcription
segments from David et al.12, red boxes are annotated ORFs (derived from
the Saccharomyces Genome Database), and arrows denote the direction
of transcription. SAC7 shows a 5¢ UTR of 536 bp (ref. 12). (b) Average
nucleosome occupancy surrounding TSSs for the ensemble of verified
transcripts. This graph shows the log ratio of nucleosome occupancy
plotted against genomic coordinate relative to the ATG start codon of an
ORF (blue) or the TSS12 (magenta). Inset highlights the data between
"50 and +300 of the TSS.
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Their test
prominent NDRs7,8,17, and genes expressed at low levels tend to have
promoters that are more occupied by nucleosomes. We find a similar
trend in our data (Fig. 2b). When we divided the 5,015 verified
transcripts into three classifications on the basis of transcript abun-
dance12 and tested whether expression correlated with a particular
nucleosome distribution, we found that the distribution of nucleosome
occupancy in the promoters of these three sets of transcripts is distinct.
Our data also show that nucleosome occupancy within coding

regions correlates with transcription level, but in the opposite manner.
Specifically, highly expressed genes are significantly more occupied by
nucleosomes than are genes expressed in small amounts or not at all
(Fig. 2c). This observation also holds true when genes are separated
by transcriptional frequency rather than by steady-state mRNA levels
(ref. 18 and data not shown). When the nucleosome occupancies of
genes expressed in different amounts are compared, the distinctions
are statistically significant (t-test, P o 1 ! 10"15 for all three expres-
sion levels). A possible explanation for the observed patterns of
occupancy is that the act of transcription promotes or requires form-
ation of the ordered nucleosome structures that we observe within
genes, perhaps by increasing residence time of the Rpd3S complex19,20.
When we examined regions of the genome on the basis of their

annotations, we found that nucleosome occupancy preferences
generally depend on the genomic feature. For example, coding regions

and centromeres are the most highly occu-
pied, whereas unique and divergent inter-
genic regions (that is, unidirectional and
bidirectional promoters) are the most
depleted of nucleosomes (data not shown).
Here, we define intergenic regions as
sequences that do not encode protein
(including 5¢ and 3¢ UTRs). Although all
intergenic regions are nucleosome depleted
relative to protein-coding regions, convergent
intergenic segments that are unlikely to be
promoters are significantly more occupied
than unique and divergent regions (Mann-
Whitney test, P o 2.2 ! 10"16), consistent
with the idea that the most depleted inter-
genic regions are promoters.

TSSs define a nucleosome occupancy
signature
The hypothesis that promoters define the
boundary of nucleosome-free regions is sup-
ported by gene-by-gene observations. For
example, the SAC7 gene shows an extended
5¢ UTR of greater than 500 bp when its ORF
is aligned with its corresponding transcrip-

tion segment12. In this case, the NDR is directly upstream of the TSS
and a nucleosome is positioned precisely at the start of the transcript
(Fig. 3a). On a global scale, when the nucleosome occupancy patterns
of all promoters are averaged, the NDR is evident and most genes
contain a consistent ladder of well-positioned nucleosomes at their
5¢ ends immediately downstream from the NDR (Fig. 3). By precisely
aligning nucleosome occupancy signal by TSSs and averaging all genes,
the average nucleosome signature is clearly oriented at TSSs (Fig. 3b,
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Figure 2 TSSs are demarcated by NDRs. (a) Kernel density plot showing the distribution of nucleosome
occupancy for regions surrounding verified transcription segments that overlapZ50% of a verified gene
on the 5¢ end, as defined in ref. 12 (n ¼ 5,015). Red shows the distribution of average nucleosome
occupancy within a region 50-bp upstream of a verified transcript, green shows occupancy within a
region 50-bp downstream, and black shows occupancy within the transcript. (b) Nucleosome occupancy
within a region 50-bp upstream of verified transcription segments as separated by transcription
level. Red shows the distribution of average nucleosome occupancy for promoters of segments with
expression level o 1 (n ¼ 759), green shows that for segments with expression level between 1 and 2
(n ¼ 1,859), and blue shows the most highly expressed genes with level Z 2 (n ¼ 2,397). (c) Same
as in b, but showing average nucleosome occupancy within verified transcripts.
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Figure 3 NDRs align with TSSs and not with translation start sites.
(a) Nucleosome occupancy within a 2-kb region on chromosome 4. Green
graph represents average probe intensity ratio (log2 scale), dark green
boxes show the location of HMM-called well-positioned nucleosomes, lighter
green boxes are delocalized nucleosomes, blue boxes are transcription
segments from David et al.12, red boxes are annotated ORFs (derived from
the Saccharomyces Genome Database), and arrows denote the direction
of transcription. SAC7 shows a 5¢ UTR of 536 bp (ref. 12). (b) Average
nucleosome occupancy surrounding TSSs for the ensemble of verified
transcripts. This graph shows the log ratio of nucleosome occupancy
plotted against genomic coordinate relative to the ATG start codon of an
ORF (blue) or the TSS12 (magenta). Inset highlights the data between
"50 and +300 of the TSS.
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t-test in microarrays

We said that Mann-Whitney tests are prefferable to t-tests for
two-sample problems. That is not always true.
Remember that in the t-test we divided by a standard
deviation. What if we had additional data to estimate this?
This is something that is not possible to formulate easily in the
Mann-Whitney framework.
It is something that is crucial in microanalysis: the moderated
t-statistic.
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Microarray data

The standard microarray experiment compares two
experimental conditions. For each gene on the array we have a
number of observations in the two groups (conditions), and we
are interested in the genes which are “differentially expressed”
This is usually done by a t-test.
When you do an (ordinary) t-test you will estimate a new
variance for each gene: σ2

gene.
You could also estimate one variance which a shared across all
genes on the array: σ2.
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Microarray data, variance estimation

The problems here are

The shared variance σ2 is unlikely to be a good fit. The
genes probably will have individual variances.

But we usually don’t have many arrays: σ2
gene is poorly

estimated.

Perhaps the truth is somewhere between the two extremes:

σ2
mod, gene = α1σ

2
gene + α2σ

2

(we will ignore how α1, α2 are computed).
This is the moderated t-statistic, with good reason widely
celebrated in microarray analysis. You should always use this!
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Multiple testing, the problem

Recall the definition of a p-value

p-value

The p-value is the probability of observing a more extreme test
statistic when the hypothesis is true.

If we choose p-value cutoff of 5% we will make the wrong
conclusion (reject the hypothesis) 5% of the time, if the
hypothesis of no difference is true.
This has an impact when we do many tests, for example on a
microarray.
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Multiple testing, be precise

We will need to be specific. Now that we are doing several
tests, are we trying to control

Whether we make 1 (or k) or more error(s) amongst our
accepted hypotheses (if we assume all hypotheses are true)

Whether we make ?% errors amongst our accepted
hypotheses (if we assume all hypotheses are true)

This is different types of Type 1 error rates (statistical lingo).
The first is called the familiwise error rate, the second is called
the false discovery rate (FDR).
We need to choose what type of error rate we control. This
concept does not really make sense when we just did one
hypothesis test.
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After choosing a type 1 error rate, we need to choose a method
for controlling the error rate. Popular choices are “Bonferroni”,
“Benjamini-Hochberg”, “Holm” etc.
Most of the popular methods in the literature are “marginal
methods”.
Without going into great detail, marginal methods keep the
ordering of the different statistics, they only (essentially)
change the cutoff – how many tests are called significant.
When we do correction for multiple tessting we should in
general expect to see fewer rejected hypotheses.
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Bonferroni correction

Bonferroni is easy to understand. We will control the
family-wise error rate.
We assume that all the tests are independent, and that we have
a total of n tests. We want to have “5% chance for making one
or more error if all hypothesis are true”.
We want to choose a cut off p such that if we reject at the rate
p for the individual tests, we control the error rate.
But

pnew = P(dn
i=1Ai ) ≤

n∑
i=1

P(Ai ) = npold

based on a well known formula for probabilities. Hence, if we
have a value for pnew we are aiming at, we can dominate it by
using pold = pnew/n.
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Multiple testing: discussion

A common stated point of view is the following: “ multiple
testing is crap, I just pick my top 10 genes, they are great.”
Another statement is “multiple testing means that the
interpretation of a single test depends on what else I did”.
Discuss! Do we need p-values? Do they give insight? Does it
depend on what kind of answer we are interested in?
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Types of data

Statisticians typically divide data into

Categorical a distinct number of different categories. The
number of categories is finite. Binary data is an
important special case.

Ordinal categorical data that has an underlying order, eg.
“bad”, “mediocre”, “good”

Discrete integer data

Continous continous data.

What type of data is “gene expression data”, “high-throughput
sequencing data”, “genotype data”, “copy-number variation
data”.
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Categorical data

We have a distinct finite number of different categories. The
common model is the multinomial distribution, with the
binomial distribution an important special case when there are
only two categories.
The different categories are represented through a probability
vector. The number of items in each category is envisioned to
have arisen through a series of iid. assignments.
Said differently: we “draw” a number of items independently.
Each item is assigned to a category according to the probability
vector.
The number of draws is always assumed to be known in
advance (otherwise you need different methods than what we
have outlined here).
Example: Coin flip. Geno type.

45 / 52

Statistics with
R for

Biologists

The
two-sample
problem

Count data

Classic tests

There are a number of classic tests for categorical data.
The first test is called “goodness of fit”. We have a probability
vector p0 and we want to examine if the data could have been
generated using this probability vector.
Sometimes the probability vector p0 is a mix of estimated
quantities and of know things (this will be clearer later).
The other test is known as the “chisquare test for
independence” or “the chisquare test for no association”. In this
case we observe two categorical variables and we want to assess
if there is any dependence between them. An important special
case is known as “Fisher’s exact test”.
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The test statistic

We will be using the well known Pearson test statistic, that has
the form

X 2 =
m∑

i=1

(Oi − Ei )
2

Ei

m is the number of categories, Oi is the observed frequency of
category i and Ei is the expected frequency of category i under
the hypothesis.
This statistic is easy to explain, and it works well in practice.
There is also a likelihood ratio test statistic. The LR test
statistic is also not that hard to understand, but it does require
a couple of hours to truely explan. So most often people use
the Pearson test statistic above. Often the two statistics are
equal to each other.
There is no real reason for prefering the Pearson test statistic,
when you use a computer program.
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Example: Hardy-Weinberg

We assume that we know that the population frequency of
allele A is 0.7. I want to know if my locus is in Hardy-Weinberg
equilibrium. I observe the following number of genotypes

AA 226
Aa 165
aa 109

500
Under the assumption of HW, I get the following expected
frequencies

Ei

AA np2 500 ∗ 0.72 245
Aa 2np(1− p) 2 ∗ 500 ∗ 0.7 ∗ 0.3 210
aa n(1− p)2 500 ∗ 0.32 45

My value of X 2 is 106.26.
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The reference distribution

Using asymptotic arguments one can show that the distribution
of X 2 approximately is a Chisquare distribution with the
degrees of freedom equal to the number of categories - 1 - the
number of parameters under the hypothesis (For the HW the
degrees of freedom is 1).
For the aproximation to work you need a decent number of
expected frequencies in each category.
But (as always): we can also find the distribution through
Monte-Carlo simulation. This always works and should be
implemented in any decent statistics program (how to do this
can be hard, if you want the procedure to be fast).
For our data, the approximation should work fine.

49 / 52

Statistics with
R for

Biologists

The
two-sample
problem

Count data

Test for independence

The chisquare test for no association works in a similar fashion.
If we let cj be the marginal probabilities for one variable
(column) and we let rk be the marginal probabilities for the
other variable (row), independence says that pj ,k = cj rk .
Watch out: before we used i to index the categories. Now we
have a two-dimensional table that we index by (j , k).

pj ,k rk

cj

We estimate cj , rk be the empirical column/row proportions
and plug them into the Pearson test statistic.
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Example: genotype vs. disease

We want to investigate whether there is any association
between genotype and disease status. Our data are as follows

Disease status AA Aa aa

well 200 234 182
ill 40 100 146

Also: is the locus in Hardy-Weinberg equilibrium? (Estimate
the population proportion of A and plug it into the test
statistic).
Use the R function chisq.test (it can handle both cases).
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Fisher’s exact test

Fisher’s exact test is just the chisquare test for independence,
but in a 2x2 table. In this special case it is possible to compute
an exact distribution of the test statistic without using
simulation or approximation. This was really exciting 70 years
ago, before we could use simulation.
The main comment worth making about 2x2 tables is the fact
that there is one – and only one – reasonable measure of
association between the two variables (think correlation). This
is the odds ratio. This was established at least 60 years ago in
the statistics literature,
Unfortunately, we sometimes see people “discovering”“new”
ways of measuring dependency in 2x2 tables. Such nonsense is
better ignored.
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