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What can we do with statistics
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Common goals with a statistical analysis
The

s m Estimation
e m Hypothesis testing
m Understanding
m Prediction
m Get low p-values and publish

These goals might look similar, but in actual use cases they can
lead to surprisingly different strategies for analyzing data.
In this lecture we will focus on hypothesis testing.
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The two-sample location problem

We will start by considering a classical problem: the
two-sample location problem. We will attack this problem
using a variety of methods, and essentially touch many
important concepts in modern statistics.

We are observing observations from two groups — this could be
gene expression for two different organisms, blood pressure
from males/females, etc.

We assume that the observations are iid. (independent,
identically distributed) within each group. We also assume that
the distributions of observations from the two groups are equal,
except a location shift (mean shift).

The objective is to decide whether there is any difference
between the two groups.



Testing: setup

@Sl The basic ingredients in the testing framework are

Biologists

m A model (assumptions)
m A hypothesis
m A test statistic

The
two-sample
problem
Contrary to what some people seem to suggest, there is always
a model. Sometimes the model is really obscured (especially if

you read a paper).

test statistic

A test statistic is some univariate function of the data. It
should be small when the hypothesis is true and big when the
hypothesis is false

(A better description for big/small is perhaps “extreme”, “less
extreme”)



Example: t-test
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The t-test is a solution to the two-sample problem

The (Classic) model the two groups are both normal distributed
two-sample

problem with the same variance. They differ in their mean
(location).

Hypothesis the location of the two groups are the same.
Test statistic the difference in mean between the two groups

divided by an estimate of the standard deviation
of the difference. Also known as the t-statistic.

It is clear that the t-statistic is “extreme” (either very positive or
very negative) if the location is different and close to zero if the
location is the same.



Example
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Roe_sample Let us simulate some data and compute the t-statistic. Usually
problem the t-statistic is the difference between the means in the two
groups, divided by an estimate of the standard deviation of the
difference in means. The are different ways to get the standard
deviation estimate, we will be using the standard one (see later
though). How this estimate is derived should be discussed in
any decent intro level statistics book (left for some serious

self-study).




Example, cont'd
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> groupldata <- rnorm(10, mean
+ sd = 1)

> group2data <- rnorm(13, mean
+ sd = 1)

> t.stat <- function(x, y) {

+ nl <- length(x)

+ n2 <- length(y)

+ variance.estimate <- ((nl -
+

+

+

+

+

>

>

+

I
)]

The
two-sample
problem

1) * var(x) + (n2 - 1) *
var(y))/(nl + n2 - 2)
(mean(x) - mean(y))/sqrt(variance.estimate *
(1/n1 + 1/n2))
}
t.stat (groupldata, group2data)
t.test(groupldata, group2data,
var.equal = TRUE)$statistic 8 /52




When is a test statistic big?
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e So now we have a test statistic t and we can compute the
two-sample

problem value on our data t(data). We know that a big value indicates
that the hypothesis might be false.

But how big is “big'?

We need an appropriate scale to measure the test statistic on in
order to decide how big it is.

And we need a cutoff on that scale in order to decide whether
it is too big.




The distribution of the test statistic
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question: “Assuming the hypothesis is true, how likely is our
Risamwe observation”. This is an interpretable probability scale.
problem This consists of two interlinked steps

m Find the distribution of the test statistic when the
hypothesis is true.

m Compute the probability of a more extreme event
happening and choose a cutoff.

p-value

The p-value is the probability of observing a more extreme test
statistic when the hypothesis is true.

10 /52



distribution of a t-statistic

Statistics with

R for So we want to compute the distribution of the t-statistic when
Biologists . .
o the model is true. To do so we simulate repeatedly from a
situation where the means are the same:

The
two-sample
problem

> groupl <- replicate(1000, rnorm(10,

+ mean = 4, sd = 1), simplify = FALSE)
> group2 <- replicate(1000, rnorm(13,

+ mean = 4, sd = 1), simplify = FALSE)
> tdist <- mapply(t.stat, groupl,

+ group2)

Example

What does this distribution represent? Is our observed
t-statistic extreme? What is the p-value. Try different values
for the mean and the standard deviation.

11 /52



Questions
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Selegte There are a few things we did, that might seem wrong: We
used some specific values of the mean and the variance in the
M simulation. How do we get these values for “real” data where we
Pcklen: do not know the truth? Would we get another result if these

numbers change? Why did we use 4 for the mean and not 5
(the two true means were 4 and 5 and why not a 3rd number?
Here a bit of theory comes handy. It is not at all obvious, but
the distribution we get is actually independent of what value
we used for the mean.

That is not always the case, so watch out when you create your
own test statistics.

What we did is ok, but it required some values (the truth) we
cannot know in a real situation.

12 /52
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Exact / Asymptotic distribution

In some cases it is possible to compute the exact distribution of
the test statistics under the hypothesis. In (more often) other
cases we resort to an asymptotic argument, where we can find
the distribution of the test statistic if the number of
observations is big enough.

For the t-statistic, the exact distribution is a t-distribution with
n — 2 degrees of freedom, when the observations are normal
distributed.

Example

How does this compare to our simulations? Does our
observations support the hypothesis?

13 /52



Interlude: Unequal variance
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tTv:isamme It is straightforward to extend the t-test to the situation where
problem the variances of the two groups are different. You simply
replace the estimate of the standard deviation of the difference
in means in the denominator with a slightly different estimate.
This should be used in most cases. It is called a Welsch t-test.
However, since we estimate the variance in each group
separately, you need to consider whether you have enough

observations in each group to do this reliably.

14 /52



Rejecting the hypothesis
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When we reject the hypothesis we say “there is sufficient
evidence in the data to support the conclusion, that the
hypothesis is wrong".

When we accept the hypothesis we say “our data seems to be
in good correspondence with the hypothesis.” Or “there is not
sufficient evidence for concluding that the hypothesis is wrong".
These two statements are not symmetric: rejecting the
hypothesis is “stronger” than accepting it.

This is a basic fact of science, we don't prove theories, we fail
to disprove them.

The
two-sample
problem

15 /52



Normality

Staﬁ;ﬁfiwifh You often see stated that the data has to be normal distributed

Biologists in order for the t-test to work. Is this really true? Somehow it
would make sense to compute the statistic no matter what —
Roe-sample rlght?
problem We have seen that the mean of a large number of iid.

observations is approximately normal (CLT) so perhaps we can
use the t-statistic anyway. How well this approximation works
depends on the number of observations and what the “true”
distribution is. We still assume the data are iid. except for the
location shift.

Example

Examine the t-test in the case that we are sampling from a
gamma distribution with shape 1. Try group sizes of (50,60)
and (10,15). Try with a shape parameter of 10. What about

other distributions?
16 /52



P-values and power
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Biologists We have computed some p-values. Often we accept/reject the

hypothesis based on whether the p-value is greater or smaller
tTv:isamme than some cutoff — typically 5% (mainly historical reasons).
Pl Having the right distribution for the test-statistic makes it

certain that we have the right interpretation of the p-value.
This is essentially tied to how often we accept the hypothesis if
the hypothesis is true.

But in real life we are also interested in how good we are at
rejecting the hypothesis, if the hypothesis is false. This is called
power, and is an important way to compare tests.

But power is much harder to calculate, because what does it
mean that the hypothesis is false? What alternative are we
considering?

17 /52



A permutation test
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Permutation tests can be very powerful. They are based on the
The same ideas we have just seen.

Evrféfear':'ﬂe Let us consider the t-test example. We will still use the
t-statistic, but we will use a different distribution (scale) to
measure it with.

The basic idea is that if the two groups have the same location,
all data are iid. — the group label has no influence on the
outcome. So we could generate samples from the hypothesis
just by re-shuffling the group labels.

This has to be done many times in order to get a distribution.

This is the main insight behind permutation tests.

18 /52
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he Permute the group labels 1000 (10000) times and compute the
two-sample permutation distribution. Below is one permutation:

problem

> alldata <- c(groupldata, group2data)
> idx <- sample(1:23, size = 23,

+ replace = FALSE)

> grouplnew <- alldatal[idx[1:10]]

> group2new <- alldatal[idx[11:23]]

> t.stat(grouplnew, group2new)

[1] 0.5429561

See replicate. What is the conclusion this time?

19 /52
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A step back
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Let us be clear here. We have now seen

- m One statistic — the t-statistic (two if you count the Welsch
two-sample t-StatiStiC)

problem

m 3 ways of generating a reference distribution of this
statistic — using a t-distribution, using a permutation test
and straight simulation.

A statistical test is a combination of a test statistic and a
reference distribution. How effective a test statistic is depends
on both.

The reference distribution needs to be “right” in order for the
p-value to be interpretable. Without an interpretable p-value, a
cutoff is meaningless.

20 /52



Permutations test, comments
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The We just computed a (large) number of permutations.
e iompIe The number of permutations is finite. If the number of
observations is even remotely big, the number of possible
permutations is astronomical (but it can be “tiny” if there a few
observations).

Sometimes, clever arguments (often based on symmetry
arguments) and good approximations makes it possible to
indeed compute a p-value as if all possible permutations have
been considered. This is tough stuff.

21 /52



Permutation tests, comments cont'd

Statistics with

B_z;;rsts Permutation tests (sometimes called exact tests) can be very
1 1!
useful. Some further comments

The m They can be very computer intensive, especially if you

two-sample

o need really small p-values.
m They do not provide confidence intervals.

m They (can) operate under somewhat different assumptions
(one point of view is that the grouping is randomly
assigned and the observations are fixed).

m There are examples of complicated models where it is not
clear that this methodology can be used.

m They require a decent number of observations.
In general permutation tests are probably under utilized,
although that depends on whom you talk to.

22 /52



Non-parametric tests
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tTv:isamme There is also a whole suite of tests that are called
problem non-parametric tests. The idea is to be a bit more flexible
regarding the distribution of the data.

Or perhaps rather construct test statistics that are more
“robust”.

For example the mean is quite affected by outliers, whereas the
median is not.

Non-parametric tests often use functions like median and ranks.

23 /52



The Mann-Whitney test

sl | we say that the two distributions are the same, but just differ

Biologists in their location (center), we could construct a test statistic
based on how often one groups observations are greater than
The the other. Since there is no natural pairing, we set

two-sample
problem

7. 1 if X< YJ
' 771 0 otherwise

(7,j denotes the observations in the two groups)
We then compute

1 rJ
U=752_2 %
i=1 j=1

if the two locations are about the same, U should be close to
1/2, otherwise it should be close to 1 or 0.

24 /52



Wilcoxon rank-sum
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There is another statistic which is very similar:

The
two-sample I

problem W = Z R,-sign(Xi)

with R; being the rank of X;.

When there are no ties in the data, U = W + const, so the two
test statistics essentially have the same value (and hence the
same distribution).

The reference distribution is obtained either by large sample
theory (asymptotic arguments) or by permutation.

25 /52
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The
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problem Example

The R function for a Mann-Whitney and Wilcoxon rank sum
test is wilcox.text. Use it on our data. Compute p-values based
both on a permutation test approach and based on an
asymptotic approach (see the exact argument). What is your
conclusion?

26 /52


http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=wilcox.text

Summary so far
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So far we have seen the following solutions to the two-sample

ohe problem

two-sample
problem

m t-statistic with an (asymptotic) reference distribution.
m t-statistic with permutation based reference distribution.
m Mann-Whitney with asymptotic reference distribution.

m Mann-Whitney with permutation based reference
distribution. .

All of them gave similar answers to our problem.
There are differences though (later).

27 /52



Interlude: test names
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The
two-sample There are many statistics with similar (or exactly the same)

prepiem names. There are at least two Wilcoxon test statistics
(rank-sum and signed-rank) and (at least) two ways of
obtaining p-values.

What does the statement “| made a Wilcoxon test” cover?
This becomes way more bewildering when one talks about a
“chi-square test”.

28 /52



Interlude: one-sample location problem
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Roe_sample There is a similar one-sample location problem. Here we have
problem one group and we wish to assess whether the group has a
specific location.

Paired two-sample problems reduce naturally to a one-sample
problem. This is often a very powerful approach.

(In paired two-sample problems, every observation from one
group is naturally matched to an observation from the other

group — for example blood pressure before and after treatment).

29 /52



Parametric / Non-parametric — what is the big
deal?
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Much has been written about whether you should prefer one
The over the other.

Evrféfear':'ﬂe In this series of examples, the main assumption that all
methods make is the assumption of independence (and
identical distribution, but that can be “fixed”). And that is very
hard to verify and can be tough to really believe.

How you get the p-value (the reference distribution) is
important.

In this specific case (the two-sample location problem), there is
ample evidence (theoretical arguments as well as simulation
studies) that show you should always do a Mann-Whitney.

30/52



Power simulation
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Besides handling outliers better, the reason for preferring the

e Mann-Whitney test is power — it is better at rejecting a false

Evrf[f;':"'e hypothesis (more precise: at worst, it is a little worse than the
t-test, at best it is a lot better).

We will do a simulation experiment to show this, using the

t-distribution as error model.

First we examine the level of the test: we simulate data where

the hypothesis is true, and examine the p-values. If the

interpretation is correct, the p-values should be uniformly

distributed.

Then we examine the power of the test when the alternative is

a shift of 1 and the significance cutoff is 5%

31/52



Back to reality. . .
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he We consider data from Lee et. al. 2007, Nature Genetics, A
two-sample high-resolution atlas of nucleosome occupancy in yeast.

problem y

Signal intensity log ratio
(this study)
o

They use a tiling microarray to probe the yeast genome. As a
result they get data where for each 4bp they have an intensity
measure related to the nucleosome occupancy at that position.

32/52



Their Question
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R for For each “region” in the genome, they compute a nucleosome

5 occupancy score, which is essentially an average of the probe
measurements inside that region.

This allows them to compute a nucleosome occupancy score for
each “gene”, “50 kb upstream of each transcription start site”,
etc.

They now want to conclude something like “the nucleosome
occupancy is (high) in (genes)” where () could be changed
depending on the question of interest.

In order to make this a bit easier they divide their regions into
2-3 classes. Examples are “within gene” vs. “upstream of gene”
vs. “downstream of gene”. Another example is “highly expressed
gene” vs “medium expressed genes” vs “low expressed genes”
(where the gene expression is estimated using a different
experiment).

The
two-sample
problem

33/52



Their figure
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Figure 2 TSSs are demarcated by NDRs. (a) Kernel density plot showing the distribution of nucleosome
occupancy for regions surrounding verified transcription segments that overlap >50% of a verified gene
on the 5’ end, as defined in ref. 12 (n = 5,015). Red shows the distribution of average nucleosome
occupancy within a region 50-bp upstream of a verified transcript, green shows occupancy within a
region 50-bp downstream, and black shows occupancy within the transcript. (b) Nucleosome occupancy
within a region 50-bp upstream of verified transcription segments as separated by transcription

level. Red shows the distribution of average nucleosome occupancy for promoters of segments with
expression level < 1 (n = 759), green shows that for segments with expression level between 1 and 2
(n=1,859), and blue shows the most highly expressed genes with level > 2 (n = 2,397). (c) Same
as in b, but showing average nucleosome occupancy within verified transcripts.
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Their test
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The Our data also show that nucleosome occupancy within coding
;‘:”:L‘)IS;':P'G regions correlates with transcription level, but in the opposite manner.
Specifically, highly expressed genes are significantly more occupied by

nucleosomes than are genes expressed in small amounts or not at all
(Fig. 2c). This observation also holds true when genes are separated

» by transcriptional frequency rather than by steady-state mRNA levels
ref. 18 and data not shown). When the nucleosome occupancies of
genes expressed in different amounts are compared, the distinctions
are statistically significant (t-test, P < 1 x 107! for all three expres-
sion levels). A possible explanation for the observed patterns of

accninancy ic that the act af trancerintinn nramatec ar reanirec forme-

35 /52



t-test in microarrays
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The

S We said that Mann-Whitney tests are prefferable to t-tests for
Pcklen: two-sample problems. That is not always true.

Remember that in the t-test we divided by a standard
deviation. What if we had additional data to estimate this?
This is something that is not possible to formulate easily in the
Mann-Whitney framework.

It is something that is crucial in microanalysis: the moderated
t-statistic.

36 /52



Microarray data
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T The standard microarray experiment compares two

e iompIe experimental conditions. For each gene on the array we have a
number of observations in the two groups (conditions), and we

are interested in the genes which are “differentially expressed”

This is usually done by a t-test.

When you do an (ordinary) t-test you will estimate a new

variance for each gene: aéene.

You could also estimate one variance which a shared across all

genes on the array: 2.

37/52



Microarray data, variance estimation
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The problems here are

m The shared variance o2 is unlikely to be a good fit. The

The

EEIOEE genes probably will have individual variances.
problem
m But we usually don’t have many arrays: aéene is poorly

estimated.

Perhaps the truth is somewhere between the two extremes:

2 2

_ 2
Omod, gene — ¥10gene + 0o

(we will ignore how a1, iy are computed).
This is the moderated t-statistic, with good reason widely
celebrated in microarray analysis. You should always use this!

38 /52



Multiple testing, the problem
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Recall the definition of a p-value

The
two-sample
problem

p-value

The p-value is the probability of observing a more extreme test
statistic when the hypothesis is true.

If we choose p-value cutoff of 5% we will make the wrong
conclusion (reject the hypothesis) 5% of the time, if the
hypothesis of no difference is true.

This has an impact when we do many tests, for example on a
microarray.

39 /52



Multiple testing, be precise
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We will need to be specific. Now that we are doing several
tests, are we trying to control

The
two-sample m Whether we make 1 (or k) or more error(s) amongst our

probiem accepted hypotheses (if we assume all hypotheses are true)

m Whether we make 7% errors amongst our accepted
hypotheses (if we assume all hypotheses are true)

This is different types of Type 1 error rates (statistical lingo).
The first is called the familiwise error rate, the second is called
the false discovery rate (FDR).

We need to choose what type of error rate we control. This
concept does not really make sense when we just did one
hypothesis test.

40 /52



Statistics with
R for
Biologists

After choosing a type 1 error rate, we need to choose a method
M for controlling the error rate. Popular choices are “Bonferroni”,
problem “Benjamini-Hochberg”, “Holm" etc.

Most of the popular methods in the literature are “marginal
methods".

Without going into great detail, marginal methods keep the
ordering of the different statistics, they only (essentially)
change the cutoff — how many tests are called significant.
When we do correction for multiple tessting we should in

general expect to see fewer rejected hypotheses.

41 /52



Bonferroni correction
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family-wise error rate.
The We assume that all the tests are independent, and that we have
e a total of n tests. We want to have “5% chance for making one

or more error if all hypothesis are true”.
We want to choose a cut off p such that if we reject at the rate

p for the individual tests, we control the error rate.
But

Pnew = P 1A ) < Z P = Npold

based on a well known formula for probabilities. Hence, if we
have a value for pyew We are aiming at, we can dominate it by
using pold = pnew/n-

42 /52



Multiple testing: discussion
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The
two-sample

problem A common stated point of view is the following: “ multiple
testing is crap, | just pick my top 10 genes, they are great.”
Another statement is “multiple testing means that the
interpretation of a single test depends on what else | did".
Discuss! Do we need p-values? Do they give insight? Does it
depend on what kind of answer we are interested in?

43 /52



Types of data
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Statisticians typically divide data into
Categorical a distinct number of different categories. The
number of categories is finite. Binary data is an

Gouils dkim important special case.

Ordinal categorical data that has an underlying order, eg.

“bad”, “mediocre”, “good”
Discrete integer data
Continous continous data.

What type of data is “gene expression data”, “high-throughput
sequencing data”, “genotype data”, “copy-number variation
data”.

44 /52
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Count data

Categorical data

We have a distinct finite number of different categories. The
common model is the multinomial distribution, with the
binomial distribution an important special case when there are
only two categories.

The different categories are represented through a probability
vector. The number of items in each category is envisioned to
have arisen through a series of iid. assignments.

Said differently: we “"draw” a number of items independently.
Each item is assigned to a category according to the probability
vector.

The number of draws is always assumed to be known in
advance (otherwise you need different methods than what we
have outlined here).

Example: Coin flip. Geno type.

45 /52



Classic tests
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There are a number of classic tests for categorical data.
The first test is called “goodness of fit". We have a probability
vector pg and we want to examine if the data could have been
Count data generated using this probability vector.

Sometimes the probability vector pg is a mix of estimated
quantities and of know things (this will be clearer later).

The other test is known as the “chisquare test for
independence” or “the chisquare test for no association”. In this
case we observe two categorical variables and we want to assess
if there is any dependence between them. An important special
case is known as “Fisher’s exact test".

46 /52



The test statistic

Sfaﬁ;ﬁffrwifh We will be using the well known Pearson test statistic, that has

Biologists the form

m =AY
X2 :Z (O, EEI)
i—1 i

m is the number of categories, O; is the observed frequency of
category i/ and E; is the expected frequency of category / under
the hypothesis.

This statistic is easy to explain, and it works well in practice.
There is also a likelihood ratio test statistic. The LR test
statistic is also not that hard to understand, but it does require
a couple of hours to truely explan. So most often people use
the Pearson test statistic above. Often the two statistics are
equal to each other.

There is no real reason for prefering the Pearson test statistic,
when you use a computer program.

Count data
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Example: Hardy-Weinberg
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We assume that we know that the population frequency of
allele Ais 0.7. | want to know if my locus is in Hardy-Weinberg

equilibrium. | observe the following number of genotypes
AA 226

Count data Aa 165
aa 109
500
Under the assumption of HW, | get the following expected
frequencies
E;
AA  np? 500 * 0.7° 245
Aa 2np(l—p) 2%500%0.7%0.3 210
aa n(l—p)®> 500%0.32 45

My value of X? is 106.26.

48 /52



The reference distribution
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Using asymptotic arguments one can show that the distribution
of X? approximately is a Chisquare distribution with the
degrees of freedom equal to the number of categories - 1 - the
number of parameters under the hypothesis (For the HW the
degrees of freedom is 1).

For the aproximation to work you need a decent number of
expected frequencies in each category.

But (as always): we can also find the distribution through
Monte-Carlo simulation. This always works and should be
implemented in any decent statistics program (how to do this
can be hard, if you want the procedure to be fast).

For our data, the approximation should work fine.

Count data
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Test for independence
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The chisquare test for no association works in a similar fashion.
If we let ¢; be the marginal probabilities for one variable
(column) and we let ry be the marginal probabilities for the
Count data other variable (row), independence says that pj x = ¢jr.
Watch out: before we used / to index the categories. Now we
have a two-dimensional table that we index by (j, k).

Pj.k rk

G
We estimate ¢j, r, be the empirical column/row proportions
and plug them into the Pearson test statistic.

50 /52



Example: genotype vs. disease
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We want to investigate whether there is any association
between genotype and disease status. Our data are as follows
Disease status ‘ AA Aa aa
well 200 234 182
ill 40 100 146
Also: is the locus in Hardy-Weinberg equilibrium? (Estimate
the population proportion of A and plug it into the test
statistic).
Use the R function chisq.test (it can handle both cases).

Count data

51/52
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Fisher's exact test
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Biologists Fisher's exact test is just the chisquare test for independence,
but in a 2x2 table. In this special case it is possible to compute
an exact distribution of the test statistic without using
simulation or approximation. This was really exciting 70 years
Count: ki ago, before we could use simulation.

The main comment worth making about 2x2 tables is the fact
that there is one — and only one — reasonable measure of
association between the two variables (think correlation). This
is the odds ratio. This was established at least 60 years ago in
the statistics literature,

Unfortunately, we sometimes see people "discovering” “new”
ways of measuring dependency in 2x2 tables. Such nonsense is
better ignored.
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