
R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

R / Bioconductor: A Short Course

James H. Bullard
Sandrine Dudoit

Division of Biostatistics, UC Berkeley
www.stat.berkeley.edu/~bullard
www.stat.berkeley.edu/~sandrine

Cuernevaca, Mexico
January 21-25, 2008

1 / 73

http://www.stat.berkeley.edu/~bullard
http://www.stat.berkeley.edu/~sandrine

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Introduction to R

1 Background

2 Using R (Emacs/ESS, GUI)

3 Getting help

4 Reading in Data

5 Types

6 Control Structures

7 Functions

8 Lists

9 Factors

10 Probability Distributions

11 Looping Constructs

12 String Processing

13 Classes

14 Packages
2 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Background

R is a version of the S programming language developed by
John Chambers at Bell Labs in 1976 to turn ideas into
software, quickly and faithfully.

S was designed to allow people to do statistical analysis
without having to write programs in a language like
Fortran.

R is an open source version of the S language described by
Chambers et al. in the “blue book.”

R was written initially by Robert Gentleman and Ross
Ihaka and released under the GPL in 1995.

3 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Background

R is both an environment for statistical computing as well
as general purpose programming language.

R has first-class functions, general data structures, lazy
evaluation, international support, matrix operations, and,
can be extended via C and other languages.

R does not have threads, has two systems of classes, but
none with explicit syntactic support, R is untyped.

R has built in support for statistical models.

4 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

An Environment for Programming

A key component for working with R, or for that matter
any programming language is to get a good development
environment.

ESS (emacs speaks statistics) is the premier environment
for working with and developing R:
http://ess.r-project.org/

“ESS provides a common, generic, and, useful interface,
through emacs, to many statistical packages. It currently
supports the S family, SAS, BUGS, Stata and XLisp-Stat
with the level of support roughly in that order.” - ESS
manual

5 / 73

http://http://ess.r-project.org/

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

An Environment for Programming

ESS is a general environment for statistical computing in
emacs. It can handle a number of other languages for
statistical computing like Stata, SAS, and, xlisp-stat.
However, it is predominantly used with R/S.

6 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Getting Started: Overview

1 extreme Programming

2 download and setup ESS

3 write your first program

4 using ESS, evaluate each line in turn, evaluate the entire
file

7 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Getting Started: Extreme Programming

A software methodology: www.extremeprogramming.org

We only want to use a couple of “ideas” here:
I pair programming
I rapid prototyping
I writing test cases (or in statistics, simulating data)

8 / 73

http://www.extremeprogramming.org

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Getting Started: Installing ESS

cd ; mkdir .emacs.d ; cd .emacs.d

wget
ess.r-project.org/downloads/ess/ess-5.3.6.tgz

tar xzf ess-5.3.6.tgz

emacs -nw /.emacs

Add the line:

(load "~/.emacs.d/ess-5.3.6/lisp/ess-site")

9 / 73

http://ess.r-project.org/downloads/ess/ess-5.3.6.tgz

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Program p1.R: Vectorized Hello World

> H <- rep("hello", 10)

> W <- rep("world!", 10)

> print(paste(H, W))

> X <- rnorm(100)

> Y <- rnorm(100)

> W <- X %*% Y

> Z <- X %*% t(Y)

> Q <- matrix(runif(100), nrow = 20,

+ ncol = 5)

> R <- Q %*% c(1, 2, 3, 4) + rnorm(100)

10 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

An ESS Reference Card

ESS [Emacs Speaks Statistics]

Reference Card for S and R
updated for ESS 5.3.0

April 4, 2006 — as of April 4, 2006

1. Nota Bene: S is the language, R is one dialect !

2. This is a list of the more widely used key - shortcuts. Many more are available, and most
are accessible from the Emacs Menus such as iESS, ESS, etc.

Interacting with the S process

For use in a process buffer ‘*R*’ (inferior-ess-mode):

〈ret〉 Send a command
〈tab〉 Complete S object name
C-c C-c Break
C-g interrupt Emacs’ waiting for S
C-a / C-e Beginning / End of command
C-c C-u Delete this command
C-c C-w Delete last word

Command history (part of Menu ‘In/Out’)
M-p Previous command
M-n Next command
C-c C-l List command history (& choose!)
C-c M-r Previous similar command
C-c M-s Next similar command
C-c〈ret〉 Copy current input
C-c C-r Top of last output
C-c C-o Delete last output

Hot keys
C-c C-v Help for S object
C-c C-l Load source file (+ error check!)

C-c C-x List objects
C-c C-s Display search list
C-c C-a Attach a directory
C-c C-d Edit an object (dump to file)

Others
C-c ‘ Jump to error after C-c C-l
C-c C-q Quit from S
C-c C-z Kill the S process

Inside S Transcripts (I + O)

Inside ESS transcript buffers, (*.Rout files):

〈ret〉 Send and Move
C-c C-n Next prompt
C-c C-p Previous prompt
C-c C-w Clean Region (7→ input only)

Editing S source

For use in ess-mode edit buffers, (*.R files):

〈tab〉 Indent this line
C-c〈tab〉 Complete S object name
M-〈tab〉 Complete file- / path- name
M-C-a Beginning of function
M-C-e End of function
M-C-q Indent this expression (use at ‘{’)
M-C-h Mark this function

Evaluation commands (Prefix C-u: in/visibly)
C-c C-l Load this buffer – detect errors !
C-c C-n Step through code – line by line
C-c C-e Evaluate an expression
C-c C-j Evaluate this line
C-c M-j Evaluate this line and go
M-C-x Evaluate this function
C-c C-f Evaluate this function
C-c M-f Evaluate this function and go
C-c C-p Evaluate this paragraph and step
C-c C-c Evaluate this para. or function & step
C-c C-r Evaluate this region
C-c M-r Evaluate this region and go
C-c C-b Evaluate this buffer
C-c M-b Evaluate this buffer and go

Others
C-c C-v Help for S object
C-c C-d “dump” – Edit another object
C-c C-z Return to S process (at prompt)

At SfS, or activated by M-x ess-add-MM-keys

C-c f insert function() definition outline

Reading help files

For use in ‘*help[R](. . .)*’ help buffers:

SPC Next page
DEL Previous page
b Previous page (‘back’)
/ Search forwards
n Next section
p Previous section
s Skip (‘jump’) to a named section
s e e.g., skip to “Examples:”
l Evaluate one ‘Example’ line
r Evaluate current region
h Help on another object
? Help for this mode
q Return to S process (‘quit)
x Kill this buffer and return (‘exit)

11 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

ESS-Emacs Useful Commands

Emacs
I Ctl-x Ctl-f : open file
I Ctl-x Ctl-s : save file
I Ctl-x b : switch to buffer
I Ctl-x o : switch from one buffer to the next when you have

more than one open (Ctl-x 2 to split screen)
I Ctl-x k : kill buffer
I Ctl-k : kill a line
I M-w : copy
I Ctl-w : cut
I Ctl-y : paste
I Ctl-spacebar : set mark

ESS
I Ctl-c Ctl-n : eval a line and then goto the next line
I Ctl-c Ctl-v : help on a R function

12 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Getting Help

Within ESS C-c C-v

Within R

> help("lm")

> `?`(help)

> help("for")

> library(help = "stats")

> help(package = "stats")

> help.search()

> help.start()

> RSiteSearch("multivariate normal")

> apropos("package")

> example(findInterval)

13 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

The R environment

> sessionInfo()

> .libPaths()

> options()

> R.version

The definitive guide to this is: ?Startup.
Essentially, we have two types of files:

I environment files: set/unset environment variables of R
(R LIBS= /.R-packages)

I R code: set various options, do things on startup/shutdown
We need to set the R LIBS environmental variable in
.bashrc

I .Renviron is read when you start R interactively.
I .bashrc can be used to set environment variables and the

R LIBS environment variable is used when you do an “R
CMD ...” from the shell.

Let’s install some bioconductor packages which we might
need.

> options("pkgType")

14 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Data Sets

R can read data in a variety of different forms: csv,
tab-delimited, stata, excel, relational databases, etc.

Data can also be packaged up and presented to the user in
a data package:

> data()

> data(SpikeIn)

> `?`(SpikeIn)

> matplot(t(pm(SpikeIn)), type = "l")

readLines

scan

read.table

help.search("read")

15 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=readLines
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=scan
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=read.table

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Example

A colleague sends you a data file saying that he can’t open it
and hopes that you might be able to convert it to a .csv file.
He believes it contains the following columns: ”age”, ”height”,
”weight”, ”personality”, and, ”died.” The file is located in:
(data/mystery.dta).

Read in the data using either scan, read.table, or another
of the read.* variants.

Write the data into a .csv file.

Check that the .csv file is valid.

Make sure that the new file has the appropriate column
names added.

Print the first couple lines and the last couple of lines
(head, tail might be useful)

16 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=head
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=tail

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Vectors

> v1 <- 1:10

> v2 <- runif(10)

> v3 <- sample(c("A", "C", "G", "T"),

+ size = 10, replace = TRUE)

> v4 <- v3 %in% c("A", "G")

> v5 <- c("foo", 2, TRUE)

> v6 <- c(2, "3")

Atomic vectors come in 6 different modes: logical, integer,
double, complex, character, and, raw.

An atomic vector contains only basic types, all such types
must be the same.

∀i , j ∈ 1, ...length(V) mode(i) == mode(j)

17 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Vectors: modes and conversion

A vector is the most basic entity in R. To understand R,
what does this code do: length(2)?

Everything is a vector!

We can get and set the mode of vectors using: mode, and,
storage.mode.

We can change the mode of vectors using as.*

A character vector is not like a C character vector. What
does length("") return? How about length("unam")?

NA is special, what does length(NA) return

What is a length 0 object in R?

> as.numeric(v6)

> as.numeric(v5)

18 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=mode
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=storage.mode
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=length

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Attributes

> V <- rnorm(100)

> length(V)

> X <- matrix(rnorm(10), nrow = 2,

+ ncol = 5)

> attributes(X)

> colnames(X)

> rownames(X)

> colnames(X) <- paste("COLUMN-",

+ 1:5, sep = "")

For the most part attributes exist behind the scenes. A
good example of this is a matrix. We can use a matrix for
a long time without realizing that the only thing that
distinguishes a matrix from a vector is an attribute “dim.”

19 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Attributes

dim, names, colnames, length, class, attributes, attr.

length can be changed i.e. length(V) = 10.

R Style

20 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=dim
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=names
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=colnames
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=length
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=class
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=attributes
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=attr
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=length

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Attributes

You may have noticed R has two forms for assigning: “=”, and,
“<-”(actually there are three, but lets keep it simple). The“<-”
form is the traditional form and is really the assignment
operator. We want to try to use that anywhere we are
assigning a variable a value. The “=” form can also be used as
the general assignment operator, however it is the only form for
passing in named arguments to functions and naming elements
in vectors or lists. Therefore, although in the code below both
lines are the same, it is preferable to use the 1st line.

> A <- c(a = 1, b = 2)["a"]

> A = c(a = 1, b = 2)["a"]

21 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Matrices

Matrices or multidimensional arrays are nothing more than
vectors with a non NULL dimension vector.

This affects things like printing and matrix algebra.

> V <- runif(100)

> dim(V) <- c(2, 5, 10)

> print(V)

> V2 <- array(V, dim = c(2, 5, 10))

> all(V2 == V)

> dim(V) <- NULL

> print(V)

22 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Indexing

Key

Indexing is a critical skill to cultivate in R.

By proper indexing we can often make computations much
more efficient as well as saving programmer time.

> V <- 1:100

> odds <- V[seq(1, 99, by = 2)]

> matrix(V, nrow = 10)[1,]

> matrix(V, nrow = 10)[, 1]

> matrix(V, nrow = 10)[matrix(1:10,

+ nrow = 5)]

23 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Indexing

Example

A colleague approaches you hoping you might be able to help
with some “data cleaning” issues. The colleague has
measurements from a microarray experiment, however, due to
some post-processing issues all of the intensity values have
been jumbled. In the file (data/jumbled.dta) you will find the
results of 30 microarray experiments where every 30th number
corresponds to one array, that is: element 1 and 31 are from
the same chip. Furthermore, your colleague asks if you can
summarize the probe intensity values into probe set means.
Each experiment has 20 probesets of length 20 which are
stored in sequential order ie. 1,...20 are measurements for one
probe set. Please output a file with 20 columns and 30 rows
with the mean expression level for each of the probe sets.

24 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Matrix Algebra

R can be used as a matrix algebra calculator.

As we have seen c(1, 2, 3) * c(1, 2, 3) performs
elementwise multiplication.

In order to perform matrix multiplication we do:
c(1,2,3) %*% c(1, 2, 3).

> X <- rnorm(100)

> dim(X) <- c(10, 10)

> Y <- t(X) %*% X

> dim(Y[, 1] %*% X[, 1:5])

> Y[, 1] %o% Y[, 2]

What order did it turn X into a matrix. Try the following code
and try to understand the rule.

> x <- 1:16

> dim(x) <- c(4, 4)
25 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Other useful matrix functions are:
I solve : X−1

I t : X t

I outer (%o%) : outer product of two vectors: xx t

I kronecker (%x%) : Kronecker product of two matrices
I crossprod, tcrossprod : compute AtX , compute AX t

I eigen : compute the eigen decomposition of a matrix

26 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=solve
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=t
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=outer
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=kronecker
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=crossprod
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=tcrossprod
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=eigen

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Example (Least Squares)

Based on your success with the last two assignments your
colleague asks if you can help him with another problem he is
having. After converting the microarray experimental data to a
matrix he wishes to fit a linear regression model of the form
Yi ,j = αj + βjcasestatusi ,j + εi ,j . Here, j is an index over
probesets and i is an index over microarray experiments. He
tells us that each microarray corresponds to an experimental
subject who was identified as either a case or a control. Yi ,j is
the mean expression level from the previous example. The
case/control vector is located in (data/case-control.dta). Fit a
linear regression model and estimate both α and β for 20
probesets. What about standard errors? p-values?

27 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

if-else

What happens when we execute the following code?

> vec <- rnorm(10)

> if (abs(vec) > 2) {

+ 1

+ }

What did we expect would happen?

R offers the standard control structures if, and else.

In addition R offers the ifelse construct:

> ifelse(abs(vec) > 2, 1, 0)

Also the R function switch can be useful.

28 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=ifelse
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=switch

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

if-else

> strand <- "add"

> ff <- switch(strand, add = function(...) {

+ Reduce("+", list(...))

+ }, subtract = function(...) {

+ Reduce("-", list(...))

+ })

> ff(1, 2, 3)

Vectorization

29 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

if-else

Many R functions are vectorized. However, there are a number
of exceptions. For certain functions it wouldn’t make sense,
and for others there good reasons why it is not vectorized. The
“if ... else” construct in R is not a function call (although you
might say that it kind of looks like one), and in this regard it is
important to keep in mind that when you are calling a function
you are getting what you expect.

30 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Recycling: A key to understanding vectorization

In a vectorized language when we do x = 2; y = 3; x +
y we are really doing x [i] + y [i], i ∈ 1, ...max{|x |, |y |}
A natural question to ask is what happens when length(x)
!= length(y)

Recycling happens!

Recycling simply repeats elements from the smaller vector
until it finishes with the bigger vector. When we do 1 +
c(1,2,3) we are really recycling the vector containing 1 3
times

Compare that to c(2,3) + c(3,4,5) and compare that
to: c(2,3) + c(3,4,5,8)

31 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Recycling: A key to understanding vectorization

Always pay attention to warnings which indicate you have
added vectors with “non-matching” dimensions - 9 times out of
10 you have made an error. The rules for warnings are that if
the lengths (length(x) %% length(y)) == 0 no warnings,
otherwise warning.

32 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Functions: Syntax

> fx <- function(x, y) {

+ x^y

+ }

> fx(1:10, 1:10)

> fx(4, 2)

> fx(1:10, 2:5)

In R functions are “first class” objects - this is
demonstrated by how they are defined ’<-’. A “first class”
function is not like a function in C or perl. Loosely, when
we talk about first class functions it means that they can
be treated more like data, i.e. passed into functions,
stored in data structures, and returned from functions.

33 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Functions: Syntax

The last expression of a function is the default return
value. Alternatively, we can return from functions using
the return special form - NB: return is called like a
function not like a special form such as break.

34 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Functions: Arguments

> x <- 2

> fxy <- function(x, y = rep(1, length(x))) {

+ return(x^y)

+ }

> fxy(y = seq(2, 16, by = 2), x = rep(2,

+ 8))

> fxy(rep(2, 8), seq(2, 16, by = 2))

> fxy(rep(2, 8))

All arguments to a function are “keyword” arguments.
R has lazy evaluation, what is the length of y when the
function is called?
What R does is match the arguments - you can see
match.arg for more details. The matching is done partially,
this is really a bad design choice/fact of life with R and
thus I would suggest never counting on partial matching.

35 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=match.arg

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Functions: Arguments

> collapse <- function(...) {

+ paste("(", paste(list(...),

+ collapse = ", "), ")",

+ sep = "")

+ }

The special argument: ’...’ matches all remaining
arguments

The function missing can be used to determine if an
argument was passed in or not

36 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=missing

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Functions: New Binary Operators

> "%r%" <- function(y, x) {

+ nn <- if (is.null(dim(x)))

+ rep(1, length(x))

+ else rep(1, nrow(x))

+ x <- cbind(nn, x)

+ solve(crossprod(x, x)) %*%

+ t(x) %*% y

+ }

> data(state.x77)

> state.x77[, "Murder"] %r% state.x77[,

+ "Income"]

We can define new binary operators by using the special
%name% syntax. Note the use of quotes around the
defintion
matrix multiplication and others are examples

37 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Functions: Anonymous

In a vectorized language high-level ’mapping’ operations
are performed all of the time.

Calculate some summary statistics on the columns of a
matrix, process each element of a list, etc.

In R it is widespread belief that we should “avoid the for
loop”

> X <- matrix(rnorm(10000), nrow = 100,

+ ncol = 100)

> apply(X, 1, min)

> A <- apply(X, 1, function(row) {

+ sum(row > qnorm(0.975) | row <

+ qnorm(0.025))/length(row)

+ })

We could have done this with no loops!
38 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Functions: Wrapup

It is important to be familiar with functions as objects, i.e.
we can pass them as arguments, store them in lists, and
do much more!

> a <- list(f1 = function(x) {

+ tmp <- quantile(x, probs = seq(0,

+ 1, length = 11))

+ mean(x[x > tmp[2] & x < tmp[10]])

+ }, f2 = function(x) {

+ (x - mean(x))/sd(x)

+ })

> dta <- rnorm(1000)

> a[[1]](dta)

39 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

*apply

This slide is very important. The apply family of functions are
used everywhere and good R programmers rely on them heavily.

In addition to apply we have:
I lapply : traverses a vector or list producing a new list by

applying FUN to each of its components
I sapply : similar to lapply, however sapply does some “s”

implification which often gives you results which you didn’t
expect

I mapply : like map in scheme, less used than lapply, apply

Also, recently R introduced some higher-order functions
found in Common Lisp: Map, Filter, and, Reduce.

40 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=apply
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=lapply
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=sapply
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=mapply
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=Map
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=Filter
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=Reduce

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Searching for Outliers

Example

In our previous analysis we fit a linear regression model to each
of the patients to search for important genes. We are
concerned about the presence of outliers however, and we wish
to remove them and re-fit our linear models to see if our results
change. Write a function which takes a data-set with the same
dimensions as the result of exercise 2, i.e. npeople × ngenes and
removes outliers. Define an outlier as any probeset which is in
the lower 5% or upper 5% quantile.

41 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Lists

As mentioned before vectors can store only “raw” values of
the same type.

R also offers the list data structure which can be used to
save objects of different types.

lists inherit a lisp-like style from some of the roots of R so
it is important to keep this in mind when accessing the
elements of the list.

> lst <- list(name = "jim", age = 29,

+ chol = rnorm(10, 160, 10))

> class(lst[1])

> class(lst[[1]])

lst[i] Always returns a list, whereas lst[[i]] returns the ith
element no matter what the class!

42 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=list

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

More Lists

> lst <- lapply(runif(10), function(r) {

+ if (r > 0.5)

+ rnorm(100)

+ else rnorm(100, 2)

+ })

> mat <- do.call("cbind", lst)

Can we do without the lapply? Try to generate the same data
using ifelse. What does the call to do.call

43 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=lapply
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=ifelse
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=do.call

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

data.frame

A matrix-like extension to lists is the data.frame.

Data frames are what you get when you do read.table

Really a data.frame is a list of columns that can be
accessed like a matrix - for all practical purposes it is is a
matrix, however it has a number of disadvantages and
advantages as compared to matrices.

> bases <- c("A", "C", "G", "T")[1 +

+ rbinom(100, prob = 0.5, size = 3)]

> dta <- data.frame(runif(100), bases,

+ stringsAsFactors = TRUE)

44 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=read.table

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

What is a Factor?

Factors are loosely like enumerations in other language.
They are a discrete set of levels which are associated with
vectors of objects.
When you read in data with read.table anything that looks
like a character gets read as a factor.
Factors are useful for generating tabular data, we will also
want to explore the function cut.

> myColors <- colors()[sample(1:10,

+ size = 200, replace = TRUE)]

> write.table(data.frame(age = runif(200,

+ 20, 40), colors = myColors),

+ file = "tmp.dta")

> dta <- read.table("tmp.dta")

> class(dta[, 2])

> table(dta[, 2])

> levels(dta[, 2]) 45 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=read.table
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=cut

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Distributions

We want to do statistics!
We need to be able to generate random numbers according
to distributions, compute probabilities, quantiles, densities.

d{distribution} density
p{distribution} probability
r{distribution} random variates
q{distribution} quantiles

In addition to these functions we have one of the most
important functions sample which draws from a multinomial
distribution with or without replacement.

> x <- rchisq(100, df = 10)

> pchisq(x, df = 1)

> dchisq(x, df = 10)

> qchisq(seq(0, 1, length = 10),

+ df = 1) 46 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=sample

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Random Numbers

Example (Simulating an alignment)

We would like to simulate a “hypothetical” two sequence
alignment from humans and chimpanzees. It is estimated that
humans and chimpanzees diverged aproximately X years ago.
The model of of evolution will be the Jukes-Cantor model of
evolution - specified entirely by the instantaneous rate matrix
Q. Simulate a two species alignment for a number of different
times X. How can we ensure that we have done the correct
thing? The best way to do this is to write a function which
takes as two arguments: t and N for time and number of bases
to simulate - the function should return a matrix with 2 rows
and N columns.

47 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Random Numbers

Q =


−.75 .25 .25 .25
.25 −.75 .25 .25
.25 .25 −.75 .25
.25 .25 .25 −.75


We will define the matrix exponential as in equation (1).
However if we can write Q as Q = UDU−1 i.e. if the matrix Q
is diagonalizable then we can compute the matrix exponential
more directly; as shown in: (2).

P(t) = eQt =
∞∑

n=0

Qnt

n!
(1)

eQt = UeDtU−1 (2)

48 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Random Numbers

As a reminder: Here U is a matrix of the eigen vectors and
D is a matrix with the eigen values along the diagonals.
What we have is a function of time for the conditional
probability of a base given an ancestral base. That is, we
plug in a time and we get a new probability distribution -
this is all we need to simulate.

There a lot of technical details here - we will ignore them.
Our goal is to simulate data. Firstly, we can check quite
quickly that the matrix is indeed diagonalizable by simply
trying to compute the eigen vectors and eigen values (hint:
solve).

49 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=solve

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

for and while loop

As with most programming languages R has both a for
loop and a while loop.

It used to be the case that the for loop was dreadfully
inneficient and good R programming involved vectorizing
everything.

We still want to vectorize as much as possible, however
the for loop is not as bad in newer versions of R.

> for (i in 1:10) {

+ print(i)

+ }

> while (i < 10) {

+ }

50 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Other control-flow

repeat, break, next

?Syntax

> i <- 1

> repeat {

+ if (i > 10)

+ break

+ print(i)

+ i <- i + 1

+ }

51 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Strings

R is not the best language for string processing, however a
number of natural functions are available to handle strings.

strsplit, grep, charmatch, substr, nchar, paste

To build strings we have:

1 paste : vectorized function for building strings, try
paste("chr", 1:23)

2 sprintf
3 as.character
4 toString

> sprintf("%10.20g", 1.10001)

> sprintf("%10.1000g", pi)

> toString(1:10)

52 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=strsplit
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=grep
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=charmatch
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=substr
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=nchar
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=paste
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=paste
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=sprintf
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=as.character
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=toString

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Biostrings

Bioconductor offers the Biostrings package which has a
number of functions for taking reverse-complements,
complements, and a number of other functions for
processing sequences of nucleotides.

Example

In the directory“data/pm.fasta”there is a fasta file with perfect
match probes (A perfect match probe perfectly targets the
gene of interest, i.e. if our gene of interest is: “ACG”, then our
perfect match probe will be: “TGC”). Our colleague wants us to
construct a new fasta file where we have both the perfect
match and the mismatch probes next to one another. A
mismatch probe is identical to the perfect match probe but the
middle base has been changed (from our previous example, we
would have: “TCC” as our mismatch probe).

53 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

OOP

Object oriented programming is a programming paradigm
which has become very popular in recent years. Object
oriented programming allows us to construct modular
pieces of code which can be utilized as building blocks for
large systems.
R is not a particularly object oriented system, but support
exists for programming in an object oriented style.
The Bioconductor project has pushed this style and we will
need to get familiar with the object system in R in order to
work effectively with Bioconductor.
Unfortunately R has two class systems known as S3 and
S4. These two systems are quite different and don’t play
well together in all cases.
In both R systems the object oriented system is much
more method-centric than languages like Java and Python
- R’s system is very Lisp-like. 54 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

S3 Classes

First we will take a look at S3 classes as they are quite
prevalent in day-to-day R programming.

An S3 class is constructed via the following code:
class(obj) <- "class.name"

Essentially, a class in this setting is nothing more than an
attribute that is used by special functions to perform
method dispatch.

“The greatest use of object oriented programming in R is
through print methods, summary methods and plot
methods. These methods allow us to have one generic
function call, plot say, that dispatches on the type of its
argument and calls a plotting function that is specific to
the data supplied.” – R Manual

55 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

S3 Classes

> class(ecdf(rnorm(1000)))

> plot(ecdf(rnorm(1000)))

> plot(rnorm(1000))

> print

An S3 method or generic is a method like print which when
called dispatches on the class attribute of its first argument.

56 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=print

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

S3 Classes

> jim <- list(height = 2.54 * 12 *

+ 6/100, weight = 180/2.2, name = "James")

> class(jim) <- "person"

> class(jim)

> print(jim)

> print.person <- function(x, ...) {

+ cat("name:", x$name, "\n")

+ cat("height:", x$height, "meters",

+ "\n")

+ cat("weight:", x$weight, "kilograms",

+ "\n")

+ }

> print(jim)

57 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Useful S3 Method Functions

1 getS3method("print","person") : Gets the
appropriate method associated with a class, useful to see
how a method is implemented. Try:
getS3method("residuals", "lm")

2 In emacs using ESS we can often use tab to determine
what methods are available under a certain generic. Try
typing ”plot.” and then hitting tab - hopefully we will see a
list of possible completions. This can be quite useful for
getting help on the specific method (we will see more of
this later)

3 getAnywhere : getAnywhere("lm")

4 methods : methods("print")

> getS3method("residuals.HoltWinters")

> getAnywhere("residuals.HoltWinters")

58 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=getAnywhere
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=methods

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

S4 Classes

Although S3 classes can be quite useful and powerful they
do not facilitate the type of modularization and type safety
that a true object oriented system generally enforces.

For this reason S4 classes were introduced. S4 classes are
much more of an object oriented system with type
checking, multiple-dispatch, and inheritance.

Again, here we want to forget about the classes and center
our attention on the methods

In the resources directory you’ll find two documents
describing S4 classes. These should be looked at during
the week.

59 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

S4 declaring a class

Lets say we want to construct a class representation for
alignments. What does an alignment contain? At a minimum
we need the names of the species in the alignment, the length
of the alignment, the sequences themselves, and whether we
are dealing with nucleotide data or amino acid data.

> repr <- representation(species = "character",

+ sequences = "character", length = "integer",

+ type = "character")

> setClass("Alignment", representation = repr)

[1] "Alignment"

> A <- new("Alignment")

60 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Initialization

> setMethod("initialize", "Alignment",

+ function(.Object, species,

+ sequences) {

+ .Object@species <- species

+ .Object@sequences <- sequences

+ names(.Object@species) <- NULL

+ names(.Object@sequences) <- NULL

+ if (length(sequences) !=

+ length(species))

+ stop("n species must = n sequences.")

+ .Object@length <- nchar(sequences[1])

+ names(.Object@length) <- NULL

+ ss <- do.call("c", strsplit(sequences,

+ split = ""))

61 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Initialization

+ if (all(ss %in% c("A",

+ "C", "G", "T", "-")))

+ .Object@type <- "nucleotide"

+ else if (all(ss %in% c("G",

+ "A", "L", "M", "F",

+ "W", "K", "Q", "E",

+ "S", "P", "V", "I",

+ "C", "Y", "H", "R",

+ "N", "D", "T", "-")))

+ .Object@type <- "amino-acid"

+ else stop("Unknown character in alignment")

+ return(.Object)

+ })

[1] "initialize"

62 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Methods

We have already seen our first method“inititialize”, this method
is called immediately after the object is instantiated and allows
the programmer to custumize the initialization of an object.
The show method is the S4 analog of print. Now how we
access variables ’@’

> A <- new("Alignment", names(seqs[1:10]),

+ seqs[1:10])

> print(A)

> setMethod("show", "Alignment",

+ function(object) {

+ cat("Alignment of length:",

+ .Object@length, "with type:",

+ .Object@type, "\n")

+ })

Where is the bug in this code?
63 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=show

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

S4 Nuances

R has pass-by-value semantics what does that mean for
the following code:

> deleteSpecies <- function(alignment,

+ species) {

+ a <- which(alignment@species ==

+ species)

+ alignment@species <- alignment@species[-a]

+ alignment@sequences <- alignment@sequences[-a]

+ alignment

+ }

> B <- deleteSpecies(A, "pm-2")

64 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Useful S4 Functions

showMethods("summarize")

getGeneric("+"), getGenerics()

Example

We want to add a simple method to our alignment class so we
can add alignments. Add a new method using setMethod to
allow the user to perform the following: A1 + A2 which will
construct a new alignment with the species from A1 and A2.
Also, make sure that the alignments are of the same length.

65 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Replacement Methods

As we have already seen R has a somewhat strange type of
function that allows us to modify objects in place.

It is uncommon to define new replacement functions,
however they are used quite frequently in day to day
programming of R.

Two examples are: names and colnames. Type “colnames”
into the R window and hit “tab”, notice the function
“colnames<-”?

66 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=names
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=colnames

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Replacement Methods

> a <- matrix(1:16, nrow = 4, ncol = 4)

> colnames(a) <- paste("V", 1:4,

+ sep = ".")

> colnames(a)

> point <- list(x = 1, y = 2)

> x.val <- function(x, value) {

+ x$x <- value

+ }

> "x.val<-" <- function(x, value) {

+ x$x <- value

+ return(x)

+ }

> x.val(point, 10)

> print(point)

67 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Replacement Methods

> x.val(point) <- 10

> print(point)

What does the first print statement print? What about the
second?

68 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Debugging

We will spend much more time in our lives debugging than
programming we need to get good at it!

Interpreted languages such as R are generally much nicer
to program with because we can try things out
interactively - contrast this with C where in order to
determine the value of a variable at some point in the
program we will often print it

Often functions will come from a number of interactive
operations which we do frequently enough to warrant a
name

R has a number of debugging tools, but we are going to
focus on just two key functions: debug and browser

69 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=debug
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=browser

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Debugging

We are going to debug the following function - you can find the
entire source code in “src/foo.R”

> foo <- function(a, b = 10) {

+ b <- seq(1 - min(a[, 1]), 1 +

+ max(a[, 1]), length = b)

+ b <- cut(a[, 1], b)

+ b <- split(a, b, drop = FALSE)

+ res <- rep(0, length(b))

+ for (i in 1:length(b)) {

+ x <- b[[i]]

+ for (j in 1:(length(x) -

+ 1)) {

+ for (k in (j + 1):(length(x))) {

+ res[i] <- res[i] +

70 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Debugging

+ (x[i, 2] - x[j,

+ 2])^2

+ }

+ }

+ }

+ return(res/sapply(b, function(c) nrow(c)^2))

+ return(b)

+ }

> a <- foo(a = cbind(runif(100, 1,

+ 100), rexp(100, 1/10)), b = 10)

71 / 73

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

R Packages

We will cover packages in much greater detail in a future
lecture but it is important to understand them
operationally.

The R system is essentially broken down into a number of
core or base packages and a runtime environment.

As we have seen before we can see what we have currently
in our R session using sessionInfo.
There are two main repositories for R packages - CRAN
and Bioconductor:

I http://cran.r-project.org/src/contrib/PACKAGES.html
I http://bioconductor.org/packages/release/BiocViews.html

It should be stressed that the quality of many of these
package is quite low, however there are a number of great
third party packages as well: XML and MASS to name
two.

72 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=sessionInfo
http://CRAN
http://Bioconductor

R /
Bioconductor:

A Short
Course

Background

Using R
(Emacs/ESS,
GUI)

Getting help

Reading in
Data

Types

Control
Structures

Functions

Lists

Factors

Probability
Distributions

Looping
Constructs

String
Processing

Classes

Packages

Packages: Seeing Whats Available

In order to see what packages we have installed we can use
the installed.packages.

To see what packages are available at a CRAN mirror we
can do something like available.packages.

> install.package("xtable")

For Bioconductor it is a bit different

> source("http://bioconductor.org/biocLite.R")

> biocLite("GO")

What does the source do?

73 / 73

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=installed.packages
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=available.packages
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=source

	Background
	Using R (Emacs/ESS, GUI)
	Getting help
	Reading in Data
	Types
	Control Structures
	Functions
	Lists
	Factors
	Probability Distributions
	Looping Constructs
	String Processing
	Classes
	Packages

