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Probability Models

After exploratory data analysis we often want to
investigate the applicability of various “probability” models
for the data. Classic examples include statistical tests for
equal means (t-tests and z-tests), normal linear regression
models, generalized linear regression models, and χ2 tests.

R provides a wealth of tools for statistical modeling
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Example

We want to compute pairwise t-tests for equal means between
each drug category in our viral load data set.

What are the assumptions of this test? How can we test
them?

How do the results compare with R’s builtin t-test?

Is this a “smart” thing to do?

X̄AZT − X̄ABC√
S2

AZT/NAZT + S2
ABC/NABC

(1)

4 / 62



R /
Bioconductor:

A Short
Course

Introduction

Hypothesis
Tests

Linear Models

Generalized
Linear Models

Numerical
Optimization

Non-Linear
Least Squares

Robust Fitting

Other Fitting
Procedures

Testing Normality

Clearly the ”raw”viral load data is not normally distributed.

What are some plots we can make to assess normality of
the transformed data.

> plot(density(vl <- log(viralLoad$viral.load)))

> rng <- range(vl)

> points(s <- seq(rng[1], rng[2],

+ length = 1000), dnorm(s, mean = mean(vl),

+ sd = sd(vl)), col = "red",

+ pch = ".")

> qqnorm(vl)

> qqline(vl, col = "red")
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Testing Normality

Example

Using R test the assumption of normality using both the
Kolmogorov-Smirnov test as well as the Shapiro-Wilks test.

1 What are the functions for doing this in R?

2 Do these tests give different results?

3 Why?

We want to investigate these tests using simulation. Simulate
1000 data sets from a normal distribution with 50 observations
and test each data set for normality using both tests. What
does the distribution of p-values look like? Does this make
sense? Which test is more sensitive? Comment on type I error,
how do we get to type II error?
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Tests of Associations

Very frequently we are presented with categorical data. A
good example of this is genotype data. In this setting, we
have a large number of genotypes for each person in our
study along with a set of phenotypes which were are
interested in studying.

A test which is often used in this setting to assess the
association between genotype and phenotype is a χ2 test
of independence.

AA AB BB

0 192 437 181
1 8 68 114
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χ2 Tests

χ2
K−1 =

K∑
k

(Ok − Ek)2/Ek (2)

Here Ek is the expected number of observations under the
independence model, and Ok is the actual number of
observations in category k.

Example

We would like to perform a χ2 test on our genotype data. This
will be a test for independence.

1 Implement a function which takes a table and returns a
list containing both a χ2 statistic for the test of
independence as well as a p-value for this statistic.

2 Compare this result to the builtin R function, are they the
same? What does this tell us about our data?
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The Linear Regression Model

The linear regression model is one of the most common, if
not, the most common way of modeling data.

In many cases the model is not “correct” but is often very
reasonable.

Y = Xβ + ε (3)

The linear regression model is composed of an n × p design
matrix (X ), an n× 1 vector of outcomes (Y ), a p × 1 vector of
parameters which we wish to estimate (generally denoted β̂).
Linear regression finds the estimate β̂ which minimizes the L2

loss (equation: (4)).

L2(β) =
n∑

i=1

(Y − Xβ)2 (4)
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The Linear Regression Model

Under the following assumptions linear regression is the best
linear unbiased estimator of β.

i. X and Y satisfy equation (3).

ii. The disturbance terms εi are i.i.d with mean 0 and
variance σ2.

iii. X and ε are independent.
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Linear Models

In the Introduction we fit a linear model using linear
algebra. While this is a good exercise R has a large set of
functions to facilitate fitting statistical models.

We want to be wary of using linear algebra to fit a model,
as it is often the case that the builtin methods of R will be
much faster and more numerically stable.

Statistical models in R have a special syntax (the formula
syntax):

Y ~ X

This says that the variable Y is related to X . The formula
specification is used in a variety of functions as input and
depending on that function different relationships between
the predictor variables (X ) and the outcome variables (Y )
are assumed.
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Formulas Continued

The simplest data set to begin to play with the formula
functions in R can be generated as follows:

> N <- 100

> X <- runif(N, 20, 40)

> Y <- 3 + X * 2 + rnorm(N, mean = 0,

+ sd = 5)

Now suppose we would like to fit a linear model to the data. In
R this is as simple as:

> lm.1 <- lm(Y ~ X)

> lm.1.int <- lm(Y ~ 1 + X)

1 What is the class of lm.1 and lm.1.int?

2 How can we extract the estimates β̂?

3 What are the functions which are specialized for this class
(hint methods)?
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Formulas

As the above model is not that interesting we might be inclined
to to have a look at some more interesting data sets. Let’s
have another look at our viral load data set.

> vL <- read.table("../../data/viral-load.dta")

> lm.vL <- lm(viral.load ~ age +

+ meds + infected, data = vL)

1 Is this a sensible thing to do?

2 What are the estimates of the coefficients?

3 What happened with meds?

4 How do we transform the data to get on safer ground?
(hint: try to put the log directly in the formula), try to
square the age covariate.
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Residual Analysis

As you might expect the lm object has plot and summary
methods. To get help on these directly it is usually
possible to do ?plot.lm

> plot(lm.vL)

We want to plot the residuals against some of the covariates,
remember that residuals are an estimate of the noise term ε.
We assumed that ε was vector of I.I.D. random disturbances
and independent of X , what will an age versus residual plot
potentially show us?
Is there any trend to this data? What tools from our EDA work
can we use here to make any trend stand out?
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Residual Analysis

> lm.vL <- lm(log(viral.load) ~ age +

+ meds + infected, data = vL)

> par(mfrow = c(1, 2))

> plot(vL$infected, residuals(lm.vL))

> plot(vL$age, residuals(lm.vL))
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Residual Analysis
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Interaction

Suppose based on your EDA work you think that there should
be an interaction term in the model for meds and infected. The
formula syntax provides a very handy way of modeling this.

> lm.vL.interaction <- lm(log(viral.load) ~

+ age + meds * infected, data = vL)

> anv <- anova(lm.vL, lm.vL.interaction)

If we look at the coefficients of the model we see what
happens, the ’*’ notation in the formula essentially produces
both the main effects terms as well as the interaction terms.
Had we just used a ’:’, then only the interaction terms would
have been in the model.

Res.Df RSS Df Sum of Sq F Pr(>F)

1 994 29254.90
2 991 29067.44 3 187.46 2.13 0.0948
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xtable: a handy little tool

Often we want to produce tables which are suitable for
presentation, such as the ANOVA table produced above.

xtable - in package xtable can be used to produce really
nice latex tables which can be immediately embeded in a
.Rnw document.

xtable - can also produce HTML tables.

> library(xtable)

> dta <- data.frame(rbinom(1100,

+ prob = 0.2, size = 10), rbinom(1100,

+ prob = 0.2, size = 10))

> print(xtable(table(dta)), type = "html")
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Formulas: The last word

A comprehensive reference of how to specify different
formulae in R can be found at: formulas

Y ~ M
Y is modeled as M.

M_1 + M_2
Include M_1 and M_2.

M_1 - M_2
Include M_1 leaving out terms of M_2.

M_1 : M_2
The tensor product of M_1 and M_2. If both terms are factors, then
the subclasses factor.

M_1 %in% M_2
Similar to M_1:M_2, but with a different coding.
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Formulas: The last word

M_1 * M_2
M_1 + M_2 + M_1:M_2.

M_1 / M_2
M_1 + M_2 %in% M_1.

M^n
All terms in M together with interactions
up to order n

I(M)
Insulate M. Inside M all operators have their
normal arithmetic meaning, and that term
appears in the model matrix.

This was lifted right from that page!
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Least Squares and Maximum Likelihood

Up to now we have been pretty loose about what exactly we
are modeling when we do linear regression. All we have really
said is that we are going to choose a β̂ such that it satisfies
equation (5).

β̂LS = arg min
β

∑
(Y − Xβ)2 (5)

If we make the following additional assumption about the
distribution of the error term ε:

εi ∼ N(0, σ2) (6)

It turns out that minimizing equation (5) gives us the maximum
likelihood solution for β as well. This is good news as
maximum likelihood solutions have a number of nice properties.
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Troublesome Data

In the normal linear regression model we model Y as a linear
function of β. This is appropriate in many contexts, however
one thing to note is that our X β̂, or fitted values are
unconstrained. Given the following two graphs what problems
might arise if we use the linear regression model to model the
outcome y as a linear function: a + xb?
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Generalized Linear Models

If we assume that the ε from equation (3) are N(0, σ2)
then the conditional distribution of Y is:
Y |X ∼ N(Xβ, σ2). That is, Y is conditionally normally
distributed with mean Xβ given X . We found estimates of
β using least squares, however under the assumption of
conditional normality of Y we could also have found β̂ by
maximizing the likelihood. In this case the answers will be
the same!

β̂ML = arg max
β∈β

N∏
i=1

φ(yi ;β) (7)

Here β is defined as: β = {µ, σ} and φ is the density
function for a normal distribution (for simplicity I have
suppressed the dependence on xi , but this is constant
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Generalized Linear Models

during maximization). Again, maximum likelihood says:
“Choose values for the parameters so that I maximize the
probability of seeing the data.”

In the case of count data we might think to model the
conditional distribution of Y as Poisson random variable with
some mean λ.

P(Y = k|X ) =
e−λλk

k!
(8)

The key insight is to model λ as a linear function of our data
and some parameter vector β, i.e.:

λ? ,?Xβ (9)

This doesn’t work however because we have the same problem,
namely λ must be greater than 0. This is okay, we just replace
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Generalized Linear Models

Xβ with eXβ and we guarantee that λ is always positive. This
leads us to the typical way of expressing a “Poisson regression”

log(E [Y |X ]) = Xβ (10)

We recall that the mean of a Poisson random variable with
parameter λ is just λ itself, therefore the above equation makes
sense.
Again, back to linear regression:

E [Y |X ] = Xβ (11)

And in general we have something like:

E [Y |X ] = f (Xβ) (12)
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Generalized Linear Models

f (·) is called the response function. Once we have these pieces
in place we can understand how to completely specify our
generalized linear model in R. In summary there are three
components in a glm:1

1 The data X enters the model linearly via: η , Xβ

2 The conditional mean E [Y |X ] is represented as a function
f (Xβ).

3 The response variable y can be characterized by an
exponential family distribution.

1These are taken from Michael I. Jordan’s book in progress.
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Logistic and Poisson Regression

So now that we understand the basic structure of the
generalized linear model we have to understand a little
more about what is going on in two specific, but very
important examples. Below are the two response functions
for Logistic and Poisson Regression.

Logistic Regression

flr (Xβ) =
1

(1 + e−Xβ)
(13)

Poisson Regression

fpr (Xβ) = exp(Xβ) (14)
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Logistic and Poisson Regression

We assume that the predictor variables form a linear
combination with the parameters we wish to estimate and then
that linear combination gets pumped through f to produce a
mean, this is the mean parameter of our response variable Y .

It is important to summarize here. We have data which is
certainly not normally distributed, and worse the range of
the data is not R. Therefore we want to “model” the data
in a different way. In the specific case of logistic regression
we have a 0, 1 outcome and thus a sensible model would
be one that assigned a probability to each subject of being
a 0 or a 1 based on the values of their covariates. GLMs
essentially make the constraint that the parameters: β
must enter the model linearly, i.e. η = Xβ. When we
transform η using the response function we will have done
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Logistic and Poisson Regression

so according to our modeling choice, i.e. the type of Y
(real numbers, counts, binary outcomes, rates). The
parameter estimates β̂ have a different interpretation in
terms of the “units” of Y than they did for least squares,
however one can say (quite loosely) that a large positive
β̂k for the kth covariate indicates that larger values of xk

will mean larger values of Y on the appropriate scale.

Things will be clearer when we see GLMs in practice.
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GLM: generating data

Example

In order to play a little with GLM and understand it a little
more deeply we want to generate both a binary data set and
count data set. I would like the linear component of the model
to be specified as below. Make some plots of your generated
data.

η = −20 + .1age + .2weight + cd4 (15)

We are going to specify the covariates as follows:

age ∼ Uniform(20, 40) (16)

weight ∼ Norm(65, 10) (17)

cd4 ∼ exponential(1/4) (18)

(19)
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GLM: fitting

Now that we have generated the data and understood the
model we can “fit” the model - Again we are going to be
estimating some parameters β - What these parameters
mean in this context is a little bit more complicated to
sort out, however we’ll interpret the parameters once we
get them.

In order to fit the model we do:

> glm.binary <- glm(Y.binary ~ age +

+ weight + cd4, family = binomial())

> glm.count <- glm(Y.count ~ age +

+ weight + cd4, family = poisson())

The key thing here is that we have specified the “family” - that
is the conditional distribution of Y given X .
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GLM: Fitting

One thing to keep in mind is that there is not, in general, a
closed form solution for the maximum likelihood estimates of
the parameters β. Most of the time the algorithms we use an
iteratively reweighted least squares to do the fitting (glm uses
this).

> glm.binary <- glm(Y.binary ~ age +

+ weight + cd4, family = binomial(),

+ control = glm.control(maxit = 100,

+ epsilon = 0.1, trace = TRUE))

1 What class does glm return?

2 How can we make a plot of the fitted values verus the
residuals? Is this a good plot?
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ALL data set

Example

The ALL data package is a Bioconductor data package
containing gene expression measures (RMA) for 12,625 genes
for 128 patients; 95 of the patients have been diagnosed with
B-cell leukemia, and 33 patients have been diagnosed with
T-cell leukemia. We are interested in finding genes which are
predictive of leukemia type. In addition, we also have a number
of classic covariates from the patients which we might be
interested in examining.

We will need to do the following:

1 Download and install the data package from Bioconductor
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ALL data set

2 Determine which patients have which type of leukemia, in
addition understand what other covariates might be
important to have a look at.

3 Do a small EDA to determine whether we might think
about including the phenotypic covariates present (use
some of the nice smoothing techniques we learned last
time).

4 Make density plots for the gene expression levels for each
patient.

5 Determine a set of “important genes” using logistic
regression, once this set has been determined fit a model
with your important genes.

6 Classification with cross-validation to test your predictive
model!
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Numerical Optimization

As mentioned before we are computing maximum
likelihood estimates of our parameter vector β - Although
glm is really the way to go in this context often we need to
perform direct numerical optimization of some objective
function.

In the current context we can explore a couple of R
utilities for performing maximization or minimization of an
objective function. Here our objective function will be the
log likelihood which is displayed in equation (20) for the
binomial outcome.

n∑
i=1

yi log(f (x t
i β)) + (1− yi ) log(1− f (x t

i β)) (20)
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Numerical Optimization: R

The main R functions for numerical optimization are the
following:2

1 optim General-purpose optimization based on
Nelder-Mead, quasi-Newton and conjugate-gradient
algorithms. It includes an option for box-constrained
optimization and simulated annealing.

2 nlm This function carries out a minimization of the
function ’f’ using a Newton-type algorithm. See the
references for details.

3 nlminb Unconstrained and constrained optimization using
PORT routines.
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Numerical Optimization: R

4 optimize The function ’optimize’ searches the interval
from ’lower’ to ’upper’ for a minimum or maximum of the
function ’f’ with respect to its first argument.The method
used is a combination of golden section search and
successive parabolic interpolation.

5 uniroot The function ’uniroot’ searches the interval from
’lower’ to ’upper’ for a root (i.e., zero) of the function ’f’
with respect to its first argument.

2These descriptions are taken right out of the help files.
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Using optim

> fx <- function(x) {

+ -return(4 + x^2)

+ }

> optimize(fx, c(-100, 100))$objective

[1] 4

1 Try to optimize a function of two variables (use optim
instead).
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Function Closure

Function closure exists in a number of ”high-level”
languages, such as scheme and Lisp.

We can think of functions as “objects” in that they have
state. This is quite different from C and perl and is a very
powerful concept.

The idea is that a function has an ”environment” which it
was created with, generally this is the special environment
.GlobalEnv

> a <- rnorm(100)

> fx <- function(x) {

+ mean(x * a)

+ }

> fx(10)
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Function Closure

As we have seen before functions can be defined within
other functions. When this happens the function defined
inside the outer function inherits it’s environment.

> makeF <- function(vec) {

+ return(function(x) {

+ mean(x * vec)

+ })

+ }

> fx <- makeF(rnorm(100))

> fx(10)
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Function Closure

Another example which demonstrates more clearly that
functions have “state” and can be treated like objects is the
following simple example of a function which returns a function
which accepts a message which instructs the function what
action to perform. This can be very useful if there is a high-cost
of setting up some objects, for instance database connections.

> makeModelFitter <- function(X) {

+ xtxInv <- (solve(t(X) %*% X) %*%

+ t(X))

+ function(msg, ...) {

+ switch(msg, fit = {

+ Y <- list(...)[[1]]

+ if (is.null(Y))

+ stop("fit is called with Y.")
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Function Closure

+ betas <<- (xtxInv %*%

+ Y)

+ }, coef = {

+ if (!exists("betas")) {

+ stop("must call fit first")

+ }

+ return(betas)

+ })

+ }

+ }
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Function Closure

This will be very useful in context of numerical optimization of
a number of likelihood functions. The common problem can be
seen when we look at functions such as optim which takes a
function of the parameters which we wish to optimize. In
addition to this we can see that the likelihood equation
depends on x and y , as well as β. As we are optimizing we
don’t change the data, therefore we will use closure to generate
a function which takes only the parameters which we will be
optimizing over.

The other option is to have X and Y as global variables,
but good programmers avoid global variables as much as
possible.
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Example

Write a function which takes the data which we generated
above to be used in the logisitic regression, something like:

> makeLikelihoodFunction <- function(x,

+ y) {

+ return(function(betas) {

+ return("something")

+ })

+ }

Use optim, and nlm to find the maximum likelihood estimates
of β.
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Likelihood Surfaces

When optimizing a function directly you have to pick sensible
starting values, this is not always easy, but oftwen we can be
aided by things like plots telling us where the likelihood is high.
In the context of generalized linear models we have the luxury
of a convex optimization problem, thus we can be confident
that when we find the maximimizer it is the global maximizer.

> par(mfrow = c(1, 2))

> image(X, Y, mat, xlab = "age",

+ ylab = "weight")

> persp(X, Y, mat, xlab = "age",

+ ylab = "weight")

47 / 62

R /
Bioconductor:

A Short
Course

Introduction

Hypothesis
Tests

Linear Models

Generalized
Linear Models

Numerical
Optimization

Non-Linear
Least Squares

Robust Fitting

Other Fitting
Procedures

Likelihood Surfaces
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Non-linear modeling in R

We have now seen both linear models as well as general
linear models, however we have barely scratched the
surface of things we might wish to model.

We recall the puromycin data set which is a data set of
rates of reaction for various concentration of enzyme in
“treated” and “untreated” cells.

> data(Puromycin)

> coplot(rate ~ conc | state, data = Puromycin)
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Non-linear modeling in R
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NLS Continued

We could maybe model the rate as a function of the log
concentration, however it turns out that the Michaelis-Menten
model is the one that is really appropriate

rate =
Vmaxconcentration
Km + concentration

(21)

We have data for rates and concentrations now we want to get
estimates for the Vmax which is the maximum initial velocity of
the reaction, and Km which is the Michaelis-Menten rate
constant.
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NLS

In order to do maximum likelihood we need a probability
model for the response variable rate, another option is to
choose a loss function and then minimize that loss. We’ll
follow essentially the same path.

arg min
β

=
∑

i

(rate− f (β; concentration))2 (22)

Here f (·) is an arbitrary function of β and concentration. We
see we have another optimization problem which we can solve
using one of the numerical optimization routines described
above, or we can try to take advantage of the fact that we
“know” f (·) up to the parameters - if we can take derivatives we
might be able ease our optimization problems.
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NLS

The main idea behind non-linear least squares is to use a
Taylor expansion of f (·) with respect to β around some
initial β0. We’ll go through this for the Michaelis-Menten
model.

Before going on it is instructive to use optim to minimize
the loss function and get estimates for our two parameters.

53 / 62

R /
Bioconductor:

A Short
Course

Introduction

Hypothesis
Tests

Linear Models

Generalized
Linear Models

Numerical
Optimization

Non-Linear
Least Squares

Robust Fitting

Other Fitting
Procedures

NLS Fit

> makeLF <- function(conc, rate) {

+ return(function(Vm, K) {

+ sum(rate - (Vm * conc/(K +

+ conc)))^2

+ })

+ }

> fx <- makeLF(Puromycin$conc, Puromycin$rate)

> makeImageMat <- function(N) {

+ mat <- matrix(NA, N, N)

+ X <- seq(0, 200, length = N)

+ Y <- seq(0, 0.1, length = N)

+ for (i in 1:N) {

+ for (j in 1:N) {

+ mat[i, j] <- fx(X[i],
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NLS Fit

+ Y[j])

+ }

+ }

+ return(list(z = mat, Vm = X,

+ K = Y))

+ }

> iMat <- makeImageMat(100)

> matrixWhichMin <- function(mat) {

+ N <- nrow(mat)

+ mm <- which.min(mat)

+ c(mm%%N, (mm - (mm%%N))/N +

+ 1)

+ }

> Vm.0 <- iMat$Vm[matrixWhichMin(iMat$z)[1]]

> K0 <- iMat$K[matrixWhichMin(iMat$z)[2]]
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NLS Fit

> nl.P <- nls(rate ~ Vm * conc/(K +

+ conc), data = Puromycin, start = c(Vm = Vm.0,

+ K = K0), trace = FALSE)

> image(iMat$Vm, iMat$K, iMat$z)
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NLS Fit
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NLS: fit

> makeCF <- function(Vm, K) {

+ return(function(conc) {

+ return((Vm * conc/(K +

+ conc)))

+ })

+ }

> plot(Puromycin$conc, Puromycin$rate,

+ pch = 16)

> conc <- seq(min(Puromycin$conc),

+ max(Puromycin$conc), length = 100)

> rateHat <- makeCF(coefficients(nl.P)[1],

+ coefficients(nl.P)[2])(conc)

> lines(conc, rateHat, type = "l")
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NLS: fit
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MASS

The R package MASS which accompanies the book
“Modern Applied Statistics with S” has a wealth of useful
tools for statistical modeling in R.

One such tool is rlm which provides robust linear modeling.

rlm uses m-estimation to fit linear models more robustly.
lqs fits only the “good” data points. See the help file for
more details.

It is not always easy to see what is an outlier and what is
not, but sometimes some knowledge of how the data was
collected/what assay was used can help - For instance, it
might be possible for a machine to give off spurious results
at high values of it’s dynamic range.
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Online Resources

1 Vector General Additive models can be fit with the vgam
package. This is probably the most popular way to fit
multinomial outcomes in R

2 In addition to fitting both linear models as well as glms R
also provides lme and nlme to fit mixed effects models
(See also the fantastic pdf on these models in the
resources directory by John Fox).
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